Line by line processing of video on IT Hardware

Kieran Kunhya <kierank@obe.tv>

Introduction

- Existing hardware able to process video on a line-by-line basis, sometimes less
 - Inherently property of minimising line buffers in hardware
 - Allows for O(lines) processing
- Advent of Uncompressed IP makes this doable using IT hardware
 - Lines are inherently packetised
- COVID world, focus on higher compression H.264/HEVC rather than Intra VC-2/JPEG-XS

Who we are?

- Company specialising in softwarebased encoders and decoders for Sport, News and Channel contribution (B2B)
- Based in Central London
- Build everything in house
 - Hardware, firmware, software
- Not to be confused with:

Open Broadcaster Software

Commercial/Operational Drivers

- Operational requirements for lower and lower latency with reduced budgets
- REMI/Remote Production for sports
 - Backhaul feeds to one or more locations for now socially distanced production
- Editorial requirements for news
 - Harder to interrogate politicians with latency
 - Disadvantage in debates for remote contributors

Benefits of IT Approach

- More flexible approach to infrastructure
- A decoupling of video processing from physical hardware
 - Move processing resources to people's homes
- Uncompressed IP deployments allowed for simple scale up and down during lockdown
 - Point and click
- Less disrupted supply-chain for IT equipment (larger pool)

Activation log

	IP address	Extra data	Туре	Date activated
۵			Activation	March 31, 2020 — 8:54 pm (+01:00)
∆			Deactivation	March 31, 2020 — 8:51 pm (+01:00)
۵			Activation	March 31, 2020 — 8:41 pm (+01:00)
۵			Activation	March 31, 2020 — 8:21 pm (+01:00)
۵			Activation	March 31, 2020 — 7:44 pm (+01:00)
٥			Activation	March 31, 2020 — 7:08 pm (+01:00)
۵			Deactivation	March 31, 2020 — 7:04 pm (+01:00)
٥			Activation	March 31, 2020 — 6:59 pm (+01:00)
۵			Activation	March 31, 2020 — 5:47 pm (+01:00)
۵			Deactivation	March 31, 2020 — 5:43 pm (+01:00)
۵			Activation	March 31, 2020 — 5:31 pm (+01:00)
۵			Activation	March 31, 2020 — 11:52 am (+01:00)
۵			Activation	March 31, 2020 — 11:23 am (+01:00)

Downsides of IT approach

- IT industry does not work on line-by-line approach, common frameworks (DirectShow, GStreamer, FFmpeg) etc all frame based
 - Wait for frame buffer to arrive, do processing, output it, wait for it to arrive, decode it
 - Frames add up quickly
- Small niches of IT understand this
 - Cloud Gaming
 - DSC (Display Stream Compression) 1 line latency!
 - Used in DisplayPort and HDMI
 - Will be interesting to see if podcast/YouTube world changes this

"Latency" according to the streaming industry

STREAMING LATENCY AND INTERACTIVITY CONTINUUM

Latency according to the streaming broadcast industry

STREAMING LATENCY AND INTERACTIVITY CONTINUUM

Uncompressed IP line by line

- Theoretically could busy loop and read line at a time. Quite costly.
- In practice, have to do 2022-7 and maybe wait for audio, so 5-10 lines is acceptable
- Decapsulate whilst the next chunk arrives
- Ideally go straight from 2110 packet pixel format to internal encoder pixel format (or decoder -> 2110)
 - Difficult to do in practice with modular codebase
- All of this sounds easy but it's hard!

Uncompressed IP line by line (2)

- Receive chunks
- Do processing on them, insert a logo, whatever
- Release on next PTP epoch
- Plenty of time to do pixel processing
- Again not widely done in IT industry frameworks
- Can't use most fashionable programming languages with garbage collection that takes 5ms

Some quick thoughts on SDI

- Likewise most standard SDI capture/output boards work on a frame-basis
 - One Chinese manufacturer supporting "early reads"
 - Got to wait for a frame, then convert it to the pixel format you need (~5-10ms)
- Built our own with ~32 line buffer
 - Also can convert to desired pixel format whilst frame arrives on wire, reduces latency further
- Go through a similar codepath to Uncompressed IP

H.264/HEVC Encoding

- A need for < ~100ms encode/decode (glass-to-glass) but at "COVID-friendly bitrates"
- Encode a frame or a field at a time
- Use intra-refresh modes, intra frame spread over stripes, small VBV (= low latency)
- Unlike intra modes, best to allow ratecontrol to work on entire frame
 - Some hardware vendors doing sub-frame encode
- Uncompressed audio essentially mandatory
 - Audio encode latency too high (except Opus)
- No hit to compression efficiency for frame/field

Motion adaptive intra refresh for the H.264 video coding standard Ralf M. Schreier, A. Rothermel

Decode frame as it arrives on the wire (1)

Complete frame is built

Slices arrive at destination

Decode frame as it arrives on the wire (2)

- Avoid deblocking on slice boundaries
 - Independently decodable slices
- On high bitrate streams latency/throughput tradeoff
 - May need to buffer slices and decode simultaneously to gain enough throughput to decode in realtime
- Decoders output chunks when done
 - Uncommon in IT decoders
 - Cloud gaming uses this
- Render slices when buffer is big enough

Decode frame as it arrives on the wire (3)

- Compressed video likely not PTP locked, so have to frame synchronise before outputting as 2110
 - Have to resample audio as well, also have to decode audio as it arrives on the wire...
 - Again a concept not supported in IT
- Some applications (where not used for production, e.g monitoring, PTZ control) could free-run to lower latency
 - Output slices to network as soon as it's done
 - Illegal 2110 stream

- Similar except chunks encoded as they arrive
 - 32-128 lines of latency
 - ~100-200Mbps of bitrate

COVID Tradeoffs

- Some operations will take place in a home or nontraditional environment
 - Could be that 5-7 round trip time of RIST/Zixi is tolerable, gives Zoom-like experience, low-latency with the odd hit here and there. ~200ms end to end not bad.
- Start seeing broadcast products having home focus instead of Zoom and others being used as stopgap
- Use of 4:2:2 10-bit, SDI and other things not usually used at home
 - Again for lower latency than PC/cellbonding based products
 - Remote editing/grading etc
 - Employers paying for dedicated connections

COVID Tradeoffs (2)

- Quite a few domestic issues with 100GbE switches at home
 - Probably not going to see much 2110 in a home environment

Conclusions

- In the end best of both worlds
 - COTS hardware but sub-frame encoding and decoding
- Right image 5 frames end to end at modest bitrate (sub-100ms), can cut more frames in the future
 - 2110 in and 2110 out
 - Could be SDI
- 2110 -> MPEGTS -> 2110 remote production

