

September 24, 2024

Video Services Forum (VSF)
Technical Recommendation TR-10-14

	

Internet	Protocol	Media	Experience	(IPMX):	

IPMX	USB	

 2 VSF TR-10-14

© 2024 Video Services Forum

This work is licensed under the Creative Commons Attribution-
NoDerivatives 4.0 International License. To view a copy of this license, visit

https://creativecommons.org/licenses/by-nd/4.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA
94042, USA.

http://www.videoservicesforum.org

INTELLECTUAL PROPERTY RIGHTS

RECIPIENTS OF THIS DOCUMENT ARE REQUESTED TO SUBMIT, WITH THEIR
COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT CLAIMS OR OTHER
INTELLECTUAL PROPERTY RIGHTS OF WHICH THEY MAY BE AWARE THAT MIGHT
BE INFRINGED BY ANY IMPLEMENTATION OF THE RECOMMENDATION SET
FORTH IN THIS DOCUMENT, AND TO PROVIDE SUPPORTING DOCUMENTATION.

THIS RECOMMENDATION IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS
EXPRESSLY DISCLAIMED. ANY USE OF THIS RECOMMENDATION SHALL BE MADE
ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR
ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY
WHATSOEVER TO ANY MPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF
ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE
OF THIS RECOMMENDATION.

LIMITATION OF LIABILITY

VSF SHALL NOT BE LIABLE FOR ANY AND ALL DAMAGES, DIRECT OR INDIRECT,
ARISING FROM OR RELATING TO ANY USE OF THE CONTENTS CONTAINED HEREIN,
INCLUDING WITHOUT LIMITATION ANY AND ALL INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS,
LOSS OF PROFITS, LITIGATION, OR THE LIKE), WHETHER BASED UPON BREACH OF
CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT
LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THE FOREGOING NEGATION OF DAMAGES IS A FUNDAMENTAL
ELEMENT OF THE USE OF THE CONTENTS HEREOF, AND THESE CONTENTS WOULD
NOT BE PUBLISHED BY VSF WITHOUT SUCH LIMITATIONS.

http://www.videoservicesforum.org/

 3 VSF TR-10-14

Executive Summary

IPMX was created to foster the adoption of open standards based protocols for interoperability
over IP in the media and entertainment (M&E) and professional audio/video industries. This
technical recommendation defines the transport layer technologies for IPMX USB-over-IP
networks. The NMOS REST APIs from AMWA provides discovery, connection management,
and control.

 4 VSF TR-10-14

1 Introduction	(Informative)	

The main purpose of the IPMX USB is to enable low-latency management and control of USB
communication between a Host and a remotely located peripheral as shown in Figure 1. Such
remote peripheral might be of any type.

Figure 1: IPMX USB IP usage

The IPMX USB-over-IP-networks specification intends to provide USB streaming solutions to
any peripheral type and any USB use-case, to serve the system vendor with flexibility to solve
any use-case. Remote access to a peripheral’s USB port might have near-real-time needs, to
change a device state, or enable the Host responding quickly to some extreme events that occur
on the peripheral side. Within a network where the bandwidth is not oversubscribed, a time
latency of tens of Microseconds should be achieved.

IPMX USB is based on USB 2.0 specifications. All features of the USB 2.0 specification are
supported, and multiple devices can be attached. All IPMX USB communications on the IP
network are encrypted.

1.1 Contributors	
The following individuals participated in the Video Services Forum IPMX working group that
developed this technical recommendation.

USB Host ControllerVirtual USB HUB

Stub DriverVirtual USB Device

May be integrated in
the Host or connected

to the Host with an
USB connection

IP connection

USB connection

 5 VSF TR-10-14

Alain Bouchard (Matrox) François-Pierre CLOUET
(intoPIX)

Nick Nicas (AT&T)

Andre Testa (Matrox) Jack Douglass (PacketStorm) Paulo Francisco (Evertz)
Andreas Hildebrand (ALC
NetworX)

Jean Lapierre (Matrox) Raymond Hermans (Adeas)

Andrew Starks (Macnica) Jean-Jacques Ostiguy
(Matrox)

Ronald Anderson (Christie
Digital)

Ben Cope (Intel) Jed Deame (Nextera) Ryan Wallenberg (Cobalt)
Brad Gilmer (VSF) John Dale (Media Links) Sara Seidel (Riedel)
Christian Toutant (Matrox) Lynn Rowe (One World

Tech)
Steve Kolta (Christie Digital)

Dan Holland (DHC) Marc Levy (Macnica) Thomas True (NVIDIA)
Daniel Bouquet (ANALOG
WAY)

Marc-Antoine Massicotte
(Matrox)

Tim Bruylants (intoPIX)

Danny Pierini (Matrox) Mike Boucke (AJA) Wes Simpson (LearnIPvideo)

1.2 About	the	Video	Services	Forum	

The Video Services Forum, Inc. (www.videoservicesforum.org) is an international association
dedicated to video transport technologies, interoperability, quality metrics and education. The
VSF is composed of service providers, users and manufacturers. The organization’s activities
include:

§ providing forums to identify issues involving the development, engineering, installation,
testing and maintenance of audio and video services;

§ exchanging non-proprietary information to promote the development of video transport
service technology and to foster resolution of issues common to the video services
industry;

§ identification of video services applications and educational services utilizing video
transport services;

§ promoting interoperability and encouraging technical standards for national and
international standards bodies.

The VSF is an association incorporated under the Not For Profit Corporation Law of the State of
New York. Membership is open to businesses, public sector organizations and individuals
worldwide. For more information on the Video Services Forum or this document,
please call +1 929-279-1995 or e-mail opsmgr@videoservicesforum.org.

2 Conformance	Notation	
Normative text is text that describes elements of the design that are indispensable or contains the
conformance language keywords: "shall", "should", or "may". Informative text is text that is
potentially helpful to the user, but not indispensable, and can be removed, changed, or added

http://www.videoservicesforum.org/
http://www.videoservicesforum.org/members/members.htm
http://www.videoservicesforum.org/membership/membership.htm
mailto:opsmgr@videoservicesforum.org

 6 VSF TR-10-14

editorially without affecting interoperability. Informative text does not contain any conformance
keywords.

All text in this document is, by default, normative, except the Introduction and any section
explicitly labeled as "Informative" or individual paragraphs that start with "Note:”

The keywords "shall" and "shall not" indicate requirements strictly to be followed in order to
conform to the document and from which no deviation is permitted.

The keywords "should" and "should not" indicate that, among several possibilities, one is
recommended as particularly suitable, without mentioning or excluding others; or that a certain
course of action is preferred but not necessarily required; or that (in the negative form) a certain
possibility or course of action is deprecated but not prohibited.

The keywords "may" and "need not" indicate courses of action permissible within the limits of
the document.

The keyword “reserved” indicates a provision that is not defined at this time, shall not be used,
and may be defined in the future. The keyword “forbidden” indicates “reserved” and in addition
indicates that the provision will never be defined in the future.

A conformant implementation according to this document is one that includes all mandatory
provisions ("shall") and, if implemented, all recommended provisions ("should") as described. A
conformant implementation need not implement optional provisions ("may") and need not
implement them as described.

Unless otherwise specified, the order of precedence of the types of normative information in this
document shall be as follows: Normative prose shall be the authoritative definition; Tables shall
be next; followed by formal languages; then figures; and then any other language forms.

3 Normative	References		

RFC 9293: Transmission Control Protocol (TCP)
TR-10-13:2024 IPMX Privacy Encryption Protocol (PEP)
RFC 8866: SDP: Session Description Protocol
RFC 4145: TCP-Based Media Transport in the Session Description Protocol (SDP)
RFC 3629: UTF-8, a transformation format of ISO 10646
AMWA IS-04 v1.3.2: "AMWA IS-04 NMOS Discovery and Registration Specification"
AMWA IS-05 v1.1.2: “AMWA IS-05 NMOS Device Connection Management

Specification”
USB 2.0: Universal Serial Bus Specification Revision 2.0
IEEE SA, Registration Authority, CID (https://standards.ieee.org/products-

programs/regauth/cid/)

 7 VSF TR-10-14

4 Acronyms	
CID Company ID allocated by the IEEE registration authority

NMOS Networked Media Open Specifications

SN Receiver or Sender Serial Number.

USB Universal serial bus.

WoL Wake-on-LAN

5 Definitions	
For the purposes of this document, the terms and definitions of VSF TR-10-1 and USB 2.0
specification apply. The following additional definitions also apply to this Technical
Recommendation.

Bulk Endpoint Endpoint that supports bulk transfers (“bmAttributes” bits 1:0 set to
0b10).

Control Endpoint Endpoint that supports control transfers (“bmAttributes” bits 1:0 set
to 0b00).

Endpoint USB 2.0 Endpoint as defined in section 9.6.6 of the USB 2.0
specification.

Host Processing device that is connected to a USB device such as mouse
or keyboard through a IPMX USB-over-IP connection instead of
being directly connected to the USB device.

Interrupt Endpoint USB 2.0 Endpoint that supports interrupt transfers (“bmAttributes”
bits 1:0 set to 0b11).

Isochronous Endpoint USB 2.0 Endpoint that supports isochronous data transfers
(“bmAttributes” bits 1:0 set to 0b01).

Receiver Side that is connected to the Host of the IPMX USB stream.

Receiver Connection Data This is the data used by a Sender to establish a TCP communication
channel with a Receiver. This data is composed of the Receiver IP
address of the First Control Channel with the Port address extracted
from the Sender Connection Status.

 8 VSF TR-10-14

Sender Side that is connected to the physical USB device(s) of the IPMX
USB stream.

Sender Connection Data This is the data used by a Receiver to establish a TCP
communication channel with a Sender. This data is contained in the
SDP file.

TCP Accept Refer to a Socket interface TCP accept operation.

TCP Connect Refer to a Socket interface TCP connect operation.

UTF8 Unicode Transformation Format – 8-bit: Variable-length character
encoding standard used for electronic communication as defined in
RFC-3629.

6 Overview	(Informative)	
Typically, in an operating system, a device driver is used for communication between the
application and the USB Bus Driver. The USB Bus Driver provides the interface between the
Device Driver and the physical USB interface. This is shown in Figure 2 where the USB
connection is in blue.

Figure 2: Traditional USB implementation

Figure 3 through Figure 6 show possible implementations for IPMX USB. The IPMX USB to IP
gateway converts Host USB traffic into network traffic and is called the Receiver. The IPMX IP
to USB gateway converts network traffic into Device USB traffic and is called the Sender. The
IPMX USB to IP gateway is connected through the network to the IPMX IP to USB gateway.

Application

Device DriverDevice Driver Device Driver

USB Bus Driver

Device

Hub

Device Device

Host

 9 VSF TR-10-14

Figure 3: IPMX USB to IP gateway to IPMX IP to USB gateway

Figure 3 shows the case where a IPMX USB to IP gateway is connected to the Host USB port.
The IPMX IP to USB gateway is connected to the USB devices. Both gateways are connected
with a standard IP connection.

Application

Device DriverDevice Driver Device Driver

Device

IPMX IP to USB gateway

Bus Driver

Device side

Host side

IP Network

IPMX USB To IP gateway

Host

Hub

Device Device

Receiver

Sender

 10 VSF TR-10-14

Figure 4: Integrated IPMX USB Host to IPMX IP to USB gateway

Figure 4 shows an alternative implementation where the IPMX USB to IP gateway is integrated
into the Host. In such a case, the USB Bus Driver of the Host integrates the IPMX USB to IP
gateway Bus Driver.

IPMX IP to USB gateway

IPMX USB To IP gateway
Bus Driver

Host

IP Network

Application

Device DriverDevice Driver Device Driver

Device side

Device

Hub

Device Device

Receiver

Sender

 11 VSF TR-10-14

Figure 5: IPMX USB to IP gateway to Integrated IPMX USB device

Figure 5 shows an alternative implementation where the IPMX IP to USB gateway is integrated
into the device. In such a case the device is a IPMX USB device instead of being a USB device.

IPMX IP to USB gateway

IP Network

Device side

Device

Sender

Application

Device DriverDevice Driver Device Driver

Bus Driver

Host side

IPMX USB To IP gateway

Host
Receiver

 12 VSF TR-10-14

Figure 6: Complex example

There may be multiple variations on how the IPMX USB can be used. The common link is the IP
interface between a Receiver and a Sender. In a last example, Figure 6 shows a more complex
example. This example introduces three things:

1. The Host can be connected to IPMX USB devices and USB devices. This means that the
Host USB driver includes a IPMX USB to IP gateway as well as interface to standard
USB devices.

2. A Sender can integrate an IPMX USB device and an IPMX IP to USB gateway to
interface with USB devices.

3. A Host can communicate to multiple IPMX USB devices from the same network
interface.

IPMX USB allows the Host to access the full functionality of USB remote devices as if the USB
device was directly attached to the Host. The IPMX USB to IP gateway or the IPMX USB to IP
gateway Bus Driver and the IPMX IP to USB gateway provide an interface to remote devices by
encapsulating peripheral bus request commands in IP packets and transmitting them across the
network.

IPMX IP to USB gateway

IPMX USB To IP gateway
Bus Driver

Host

Application

Device DriverDevice Driver Device Driver

Device side

Device

Receiver

Device

Device

IPMX IP to USB gateway

Device side

Device

Sender
IP Network

IPMX IP to USB gateway

Device side

Device

Hub

Device Device

Sender

 13 VSF TR-10-14

7 USB	Hub	compatibility	issues	(Informative)	
The IPMX USB mostly operates as a USB Hub as defined by the USB 2.0 specification.
However, there are some aspects of a Hub that the IPMX USB specification doesn’t follow.

7.1 Latency	
The USB specification clearly defines the maximum delay between a packet on the Upstream
port of a Hub and the same packet on the downstream Hub of the port. Since the data on IPMX
USB transit through an IP connection this maximum delay likely cannot be respected. Also,
IPMX USB intends to support software implementation that also incurs extra delay.

Increasing the delay on packet may affect the response time. This may impact the performance of
a device by reducing the effective bandwidth. An implementation may implement mechanisms to
improve performance. It is out of the scope of this specification to describe and define such
mechanisms.

7.2 Frame	synchronization	
According to the USB specification, a Hub replicates the frame timing of the Upstream port to
all its downstream ports. However, an IPMX USB implementation does not include a mechanism
to accomplish this synchronization. This lack of synchronization can cause issues, particularly
with isochronous transfers, as they rely on receiving data at regular intervals based on the frame
clock. It should be noted that this specification does not address how to resolve this problem.

Workarounds are possible. It is up to the implementor to pick the appropriate solution if
Isochronous transfers are to be supported.

8 Communication	Channels	
Senders and Receivers exchange information through Communication Channels. Those
communication channels are point to point. In a configuration where a Receiver is connected to
multiple Senders, each Receiver to Sender connection uses its own set of communication
channels.

Each connection between a Receiver and a Sender uses multiple communication channels: there
shall be one control channel and there may be multiple data channels.

Communications channels shall use TCP protocol as defined by RFC-9293. The TCP data
payload in Communications Channels shall be in the form of messages as defined in section 9 of
this document.

 14 VSF TR-10-14

8.1 Control	Channel	
The Control Channel shall be used for Receiver-to-Sender messages. This channel is setup using
the information from the Sender Connection Data is included in the SDP file that shall be
communicated to the Receiver by NMOS.

The Control Channel shall be used for the following messages from the Sender:

• Sender Connection Information
• Heartbeat
• Vendor Specific Information
• Vendor Specific Query

The Control Channel shall be used for the following messages from the Receiver:

• Sender Connection Status
• Vendor Specific Query Return

8.2 Data	Channels	
All the other communication channels are Data Channels. A Data Channel shall be created for
each USB device. Data Channels shall be used for the USB data transfer of the USB device
associated with the channel.

The Data Channels shall be used for the following messages from the Sender:

• USB Stream Information
• USB Stream Reset Return
• USB Submit Return (Control, Bulk, Interrupt, Isochronous)

The Data Channels shall be used for the following messages from the Receiver:

• USB Stream Status
• USB Stream Reset
• USB Submit (Control, Bulk, Interrupt, Isochronous)

8.3 Establishing	a	communication	channel		
The Control Channel shall be established with TCP using the Sender Connection Data. Data
channels shall be established with TCP using the Receiver Connection Data.

Figure 7 shows how the communication channels are established.

 15 VSF TR-10-14

Figure 7: Communication channels

8.3.1.1 Sender-to-Receiver	connection	
Once a Receiver has received the Sender Connection Data from NMOS, it can connect to the
Sender and wait for a command. After a successful TCP Connect, on reception of the Sender
Connection Information message, the Receiver shall send a Sender Connection Status message.
The Receiver is then ready to receive other messages.

The Sender accepts incoming TCP connection. After a successful TCP Accept, the Sender shall
send a Sender Connection Information message and wait for a response. The Sender may send
other messages once the Sender Connection Status message is received.

8.3.1.2 Data	Channels	connection	
Once a Sender has accepted the incoming TCP connection on the Control channel, it may open
Data Channels connections with the Receiver. The Sender shall open one Data Channel for every
USB port connected to its downstream USB interface when a USB device is connected to this
USB port. When the USB device is disconnected, the Data Channel connection shall be closed
by the Sender.

For each Data Channel connection, the Sender shall connect to the Receiver. After a successful
TCP Accept, the Sender shall send a USB Stream Information message and shall wait for the
USB Stream Status message. Once the status is received, the Sender shall be ready to receive
USB Submit messages.

For each Data Channel connection, the Receiver shall accept the TCP connection and then wait
for a USB Stream Information message. The Receiver shall send a USB Stream Status message
on reception of the USB Stream Information message. The Receiver shall not send USB Data
Submit messages before the USB Stream Status message is sent.

Receiver

Sender Connection Information

Sender
connect

accept Sender Connection Info

Control channel

Sender Connection Status

Sender

USB Stream Information

Receiver

connect
accept

Data channel N

USB Stream Status

Receiver Connection Info

 16 VSF TR-10-14

9 IPMX	USB	TCP	messages	
IPMX USB TCP messages as shown in Figure 8 shall be stored in big endian format. The bit
order of Figure 8 and all other figures representing messages, represent the transmission ordering
where the MSB is transmitted first and the LSB is transmitted last. IPMX USB TCP messages
should be encrypted and authenticated. Fields of the IPMX USB TCP message shall be as
described in Table 1.

Figure 8: IPMX USB TCP messages

CTR

0
1
2
3

LENGTH - 3
LENGTH - 2
LENGTH - 1

KEYVERSION

MSGTYPE

EN
C

R
YPTED

AU
TH

EN
TIC

ATED

Reserved
LENGTH

MAC

DATA

4
5
6
7
8
9

10
11
12
13
14
15

LENGTH - 6
LENGTH - 5
LENGTH - 4

LENGTH - 9
LENGTH - 8
LENGTH - 7

16

7610 5432
Bit

By
te

 17 VSF TR-10-14

Field Size Description

CTR 64 bits
64-bit AES-CTR counter value. This field is authenticated. When encryption is disabled, this field
shall be set to 0.

 KEYVERSION 32 bits
32-bit Privacy cipher key version. This field corresponds to the key_version of the TR-10-13 Privacy
Encryption Protocol. This field is authenticated. When encryption is disabled, this field shall be set
to 0.

 MSGTYPE 8-bit

 8-bit message type. Bit 7 identify the channel type, Bit 0 the direction. and Bit 4 identify Submit –
Submit Return. This field is authenticated.
 0x00 Sender Connection Information
 0x01 Sender Connection Status
 0x02 Heartbeat
 0x04 Vendor Specific Information
 0x06 Vendor Specific Query
 0x07 Vendor Specific Query Return
 0x11 USB Wake-up Control
 0x12 USB Enter Sleep
 0x14 USB Resume Operation
 0x80 USB Stream Information
 0x81 USB Stream Status
 0x82 USB Stream Reset Return
 0x83 USB Stream Reset
 0x90 USB Control Submit Return
 0x91 USB Control Submit
 0x92 USB Bulk Submit Return
 0x93 USB Bulk Submit
 0x94 USB Interrupt Submit Return
 0x95 USB Interrupt Submit
 0x96 USB Isochronous Submit Return
 0x97 USB Isochronous Submit
 0x98 USB Cancel Submit Return
 0x99 USB Cancel Submit

 Reserved 7 bits
7-bit. Those bits are reserved and shall be set to 0 before transmission and should be ignored on
reception. This field is authenticated.

 LENGTH 17 bits
17-bit length of the message in bytes. This field shall be set to a value between 24 and 131047.
This field is authenticated.

 DATA
(LENGT
H – 24)
bytes

IPMX USB data payload. The data payload is dependent on the DTYPE field and is defined for each
value of DTYPE. This field is encrypted and authenticated.

MAC 64 bits
64 LSB of the CMAC of the plain-text packet without the MAC value itself. This field is encrypted.
When encryption is disabled, this field shall be set to 0.

Table 1: IPMX USB TCP message fields

 18 VSF TR-10-14

It is expected that most of the time encryption and authentication will be used. However, TR10-
14 could be used without encryption and authentication. In this later case the same structure is
used but this representation could be simplified as shown in Figure 9.

Figure 9:IPMX USB TCP message (without TR10-13)

9.1 Sender	Connection	Information	
Sender Connection Information message shall be sent on the Control channel by a Sender when
it has accepted a Receiver TCP connection. The DATA field of the message shall have a fixed
size of 66 bytes as shown in Figure 10. Fields of the DATA field shall be as described in Table 2.

0

0
1
2
3

LENGTH - 3
LENGTH - 2
LENGTH - 1

0

MSGTYPE
Reserved

LENGTH

0

DATA

4
5
6
7
8
9

10
11
12
13
14
15

LENGTH - 6
LENGTH - 5
LENGTH - 4

LENGTH - 9
LENGTH - 8
LENGTH - 7

16

Bit

By
te

7610 5432

 19 VSF TR-10-14

Figure 10: Sender Connection Information message

Field Size Description

MAVER 4 bits Sender protocol Major Version supported. This value shall be 0 for this version of the specification.
MIVER 4 bits Sender protocol Minor Version supported. This value shall be 0 for this version of the specification.
Reserved 8 bits Those bits are reserved and shall be set to 0 by the Sender and shall be ignored by the Receiver.
CID 3 bytes Sender Company ID.

SN 61 bytes
Sender Serial number. A UTF8 bytes string from left to right that identifies the Sender. All unused bytes at
the end of the string shall be set to 0. This string shall be unique for this Sender Company ID.

Table 2: Sender Connection Information message DATA fields

9.2 Sender	Connection	Status	
Sender Connection Status message shall be sent by a Receiver on reception of a Sender
Connection Information message, only when the Receiver is connected to the Sender. The
DATA field of the message shall have a fixed size of 68 bytes as shown in Figure 11. Fields of
the DATA field shall be as described in Table 3.

MIVER0
1
2
3

SN

4
5

65

Bit

By
te

MAVER

CID

6
7

Reserved

7610 5432

 20 VSF TR-10-14

Figure 11: Sender Connection Status message

Field Size Description

MAVER 4 bits
Protocol Major Version. The combination of Protocol Major Version and Protocol Minor Version shall be
smaller or equal to the combination of Protocol Major Version and Protocol Minor Version reported by the
Sender. This value shall be 0 for this version of the specification.

MIVER 4 bits
Protocol Minor Version. The combination of Protocol Major Version and Protocol Minor Version shall be
smaller or equal to the combination of Protocol Major Version and Protocol Minor Version reported by the
Sender. This value shall be 0 for this version of the specification.

 Rsvd 3 bits Those bits are reserved and shall be set to 0 by a Receiver and shall be ignored by a Sender.

HBEAT 5 bits
Heartbeat rate index. The minimum valid value is 5 and the maximum valid value is 30. Conversion from
index to second is explained in section 11 ”Heartbeat.”

 PORT 16 bits Receiver Port number that shall be used by a Sender to connect the Data channels.
 CID 3 bytes Receiver Company ID.

SN 61 bytes
Receiver Serial number. A UTF8 bytes string from left to right that identifies the Receiver. All unused bytes at
the end of the string shall be set to 0. This string shall be unique for this Receiver Company ID.

Table 3: Sender Connection Status message DATA fields

9.3 Heartbeat	
Heartbeat message shall be sent regularly by the Sender, as defined in section 11, to maintain the
connection. There is no DATA field in the message.

9.4 Vendor	Specific	Information	
Vendor Specific Information as shown in Figure 12 may be sent on the Control channel by a
Sender to dispatch extra information that is not essential but that is complementary. A Receiver

MIVER0
1
2
3

HBEAT

SN

4

6

67

Bit

By
te

MAVER

CID5

7

PORT
Rsvd

7610 5432

 21 VSF TR-10-14

shall accept all Vendor Specific Information messages. A Receiver that does not understand a
Vendor Specific Information message shall ignore that message. Fields of the DATA field shall
be as described in Table 4.

Figure 12: Vendor Specific message

Every Sender and Receiver shall support Vendor Specific Information message type 0. In this
case the VMDATA is an informational UTF8 bytes string from left to right. The string shall be
between 0 and 256 bytes.

Field Size Description

 CID 3 bytes Message Company ID.

VMTYPE 1 byte

Vendor Specific message type.
0 String information
1 - 15 Reserved for future use
16 - 255 Vendor specific message type. Refer to the vendor for the definition of VMDATA.

VMDATA M bytes
Vendor Specific message data as defined by VMTYPE. M is the size and shall use all remaining bytes of the
message

Table 4: Vendor Specific message DATA fields

9.5 Vendor	Specific	Query	
Vendor Specific Query is sent on the Control channel by a Sender to request Vendor specific
information. A Receiver shall accept all Vendor Specific Query messages and respond to the
message. The DATA field of the message shall have a fixed size of 4 bytes as shown in Figure
13. Fields of the DATA field shall be as described in Table 5.

0
1
2
3

VMDATA

4

3 + M

Bit

By
te

CID

VMTYPE

7610 5432

 22 VSF TR-10-14

Figure 13: Vendor Specific Query message

The only VQTYPE defined for all Vendors is 0. In this case the VQDATA is an informational
UTF8 bytes string from left to right. The content of the string is up to the Receiver but shall not
exceed 256 bytes.

Field Size Description

 CID 3 bytes Message Company ID.

VQTYPE 1 byte

Vendor query type.
0 String information
1 - 15 Reserved for future use.
16 - 255 Vendor specific query type. Refer to the Vendor for the definition of VQDATA.

Table 5: Vendor Specific Query message DATA fields

9.6 Vendor	Specific	Query	Return	
Vendor Specific Query Return message as shown in Figure 14 is sent by a Receiver on reception
of a Vendor Specific Query. Fields of the DATA field shall be as described in Table 6.

Figure 14: Vendor Specific Query Return message

0
1
2
3

Bit

By
te CID

VQTYPE

7610 5432

0
1
2
3

VQDATA

4

4+M

Bit

By
te

CID

5

VQTYPE
VQSTS

7610 5432

 23 VSF TR-10-14

A Receiver shall send this message for every Vendor Specific Query message received. A
Vendor Specific Query Return message with VQSTS set to 255 and no VQDATA (M = 0) shall
be returned for an unknown Vendor Specific Query message received by a Receiver.

All Receivers shall respond with no ‘Error’ to a Vendor Specific Query message with VQTYPE
of 0. The content of the string is up to the Receiver but shall not exceed 256 bytes.

Field Size Description

 CID 3 bytes
Message Data Company ID. For Query type 15 to 255, this value shall be identical to the CID of the
equivalent Vendor Specific Query.

VQTYPE 1 byte

Vendor Specific Query type.
0 String information
1 - 15 Reserved for future use
16 - 255 Vendor VQTYPE. Refer to the Vendor for the definition of VQDATA.

VQSTS 1 byte

Vendor Specific Query Status.
0 OK
1 - 15 Reserved for future use
16 - 254 Vendor defined status.
255 Unknown Query

VQDATA M bytes
Vendor Specific data as defined by VQTYPE. M is the size and shall use all remaining bytes of the message. If
M is 0, there is no data to return.

Table 6: Vendor Specific Query Return message DATA fields

9.7 USB	Stream	Information	
USB Stream Information message shall be sent by a Sender to create a USB stream after the
Receiver has accepted a Receiver connection on a Data channel. The DATA field of the message
shall have a fixed size of 66 bytes as shown in Figure 15. Fields of the DATA field shall be as
described in Table 7.

 24 VSF TR-10-14

Figure 15: USB Stream Information message

Field Size Description

SUBSTREAMID 1 byte

Sub-stream ID. TCP channel Identifier. Bit 0 is used to identify the data direction where 0 is for Sender-
to-Receiver transfer and 1 is for Receiver-to-Sender transfer. Bits 7 to 1 are used to identify the channel.
Control channel has those bits set to 0. Values 1 to 127 are used for the data channels and are assigned
by the Sender.

USBSPEED 1 byte

USB Speed.
 0 Unknown
 1 Low Speed
 2 Full Speed
 3 High Speed

BUSID 64 bytes
Bus ID. The Bus ID is a 64 UTF8 bytes string from left to right that identifies the USB device. All unused
bytes at the end of the string shall be set to 0. An IPMX USB bus shall be uniquely identified by the
combination of Sender’s CID, Sender’s SN, and Bus ID.

Table 7: USB Stream Information message DATA fields

9.8 USB	Stream	Status	
USB Stream Status message shall be sent by a Receiver when it has received a USB Stream
Information message. The DATA field of the message shall have a fixed size of 1 byte as shown
in Figure 16. Field of the DATA field shall be as described in Table 8.

Figure 16: USB Stream Status message

0
1

BUSID

Bit

By
te

SUBSTREAMID
USBSPEED

65

2

7610 5432

0

Bit

By
te

CSTATUS
7610 5432

 25 VSF TR-10-14

Field Size Description

CSTATUS 1 byte
Connection status. A CSTATUS of 0 indicates that there is no error (OK status). A CSTATUS of 255 indicates an
error. Other values are reserved.

Table 8: USB Stream Status message DATA fields

9.9 USB	Stream	Reset	
USB Stream Reset message may be sent by the Receiver to reset the USB port. This message can
be sent at any time after the Receiver has received a USB Stream Information. There is no data
in the message. After sending a USB Stream Reset message, the Receiver shall wait for a USB
Stream Reset Return message before sending any message to that Port.

Refer to section 7.1.7.5 “Reset Signaling” of the USB 2.0 Specification for more information
about the reset.

9.10 USB	Stream	Reset	Return	
USB Stream Reset Return message shall be sent by the Sender to confirm that the USB Stream
Reset has been processed. There is no data in the message.

9.11 USB	Wake-up	Control	
USB Stream Wake-up Control message may be sent by a Receiver to control the Wake-on-LAN
state of the Sender. The default Wake-on-LAN state is ‘Disable’. This message can be sent at
any time after the Receiver has received a Sender Connection Information message. The DATA
field of the message is shown in Figure 17 and shall have a size between 1 and 7 bytes. Fields of
the DATA field shall be as described in Table 9.

Figure 17: USB Wake-up Control message

0
1

PASSWD

Bit

By
te

WAKECTRL

N

7610 5432

 26 VSF TR-10-14

Field Size Description

WAKECTRL 1 byte
Control if the WoL is enable:

0 Disable. Magic Packet shall not be sent on USB Wake-up.
1 Enable. Magic Packet is sent on USB Wake-up.

PASSWD N byte
Magic packet password. The value of N shall be between 0 byte (no password) to 6 bytes. This password is
added at the end of the magic packet.

Table 9: USB Wake-up Control message DATA fields

9.12 USB	Enter	Sleep	
USB Enter Sleep message shall be sent by the Sender when all the USB ports connected to the
Sender enter sleep mode.

Once the message is sent, when USB Wake-up Control enables WoL, the Sender shall close all
connections to the Receiver. Once the message is received, the Receiver shall close all
connections to the Sender and should not try to reconnect to the Sender until a WoL is received.
There is no DATA field in the message.

9.13 USB	Resume	operation	
USB Resume operation message shall be sent by the Sender when a USB Enter Sleep message is
the last message sent by the Sender, the USB Wake-up Control disable WoL, and one of the
USB ports connected to the Sender resumes signaling.

9.14 USB	Control	Submit	
USB Control Submit message can be sent by a Receiver when it has sent a USB Stream Status
message. USB Control Submit message shall be sent only by Control Endpoints. The DATA
field of the message is shown in Figure 18. Fields of the DATA field shall be as described in
Table 10.

 27 VSF TR-10-14

Figure 18: USB Control Submit message

Field Size Description

SEQNUM
3
bytes

Sequential number that identifies the USB Submit. The value for the first request sent on this
data channel shall be 0. This value shall be incremented by one from the SEQNUM value of
the previous Submit message sent on this data channel.

ENDPOINT 4 bits Device Endpoint number.
Rsvd 3 bits Reserved. This field shall be set to 0 by a Receiver and shall be ignored by a Sender.

D 1 bit
Direction. This bit shall be set to 0 to indicate the OUT (Receiver-to-Sender) Endpoint and
shall be set to 1 to indicate the IN Endpoint (Sender-to-Receiver).

BINTERVAL
4
bytes

Interval for polling Endpoint for data transfers. Refer to Table 9-13 of USB 2.0 specification
for more information about this field.

TRANSFERLENGTH
4
bytes

Specifies the length of the data buffer. This field shall be set to the value of ‘wLength’ as
given by Table 9-2 of the USB 2.0 specification. This field has a different meaning depending
on the direction of data transfer as indicated by the D field.
On Receiver-to-Sender Transfer Data (D = 0), this field shall be set to the exact amount of
TRANFERDATA.
On Sender-to-Receiver data transferred (D = 1), this field shall indicate the maximum size of
the returned data to prevent overflow of the Receiver buffer.

USBDEVREQ
8
bytes

USB device request as defined in section 9.3 of the USB 2.0 specification.

TRANFERDATA
M
bytes

When D is 0, this is an array of M bytes of data where M is TRANSFERLENGTH. When D is 1,
there is no TRANSFERDATA and M is 0.
The content of the TRANFERDATA depends on the ‘bmRequestType’ and ‘bRequest’ fields of
USBDEVREQ and is defined in Table 9.3 of the USB 2.0 specification.

Table 10: USB Control Submit message DATA fields

B
yt

e

19 + M

0

Bit

SEQNUM1
2
3
4
5

ENDPOINT

TRANSFERLENGTH

USBDEVREQ

6
7
8
9

10
11
12
13
14
15
16

D Rsvd

TRANSFERDATA

BINTERVAL

17
18
19
20

7610 5432

 28 VSF TR-10-14

9.15 USB	Bulk	Submit	
USB Bulk Submit message can be sent by a Receiver when it has sent a USB Stream Status
message. USB Bulk Submit message shall be sent only on Bulk Endpoint. The DATA field of
the message is shown in Figure 19. Fields of the DATA field shall be as described in Table 11.

For Receiver-to-Sender data transfer, the TRANFERDATA shall be the Bulk Data as defined in
section 4.7.2 “Bulk Transfers” of the USB 2.0 specification.

Figure 19: USB Bulk or Interrupt Submit message

Field Size Description

SEQNUM 3 bytes
Sequential number that identifies the USB Submit. The value for the first request sent on this data
channel shall be 0. This value shall be incremented by one from the SEQNUM value of the previous
Submit message sent on this data channel.

ENDPOINT 4 bits Device Endpoint number.
Rsvd 3 bits Reserved. This field shall be set to 0 by a Receiver and shall be ignored by a Sender.

D 1 bit
Direction. This bit shall be set to 0 to indicate the OUT (Receiver-to-Sender) Endpoint and shall be
set to 1 to indicate the IN Endpoint (Sender-to-Receiver).

BINTERVAL 4 bytes
Interval for polling Endpoint for data transfers. Refer to Table 9-13 of USB 2.0 specification for more
information about this field.

TRANSFERLENGTH 4 bytes

Specifies the length of the data buffer. This field has a different meaning depending on the direction
of data transfer as indicated by the D field.
On Receiver-to-Sender Transfer Data (D = 0), This field shall be set to the exact amount of
TRANFERDATA.
On Sender-to-Receiver data transferred (D = 1), this field shall indicate the maximum size of the
returned data to prevent overflow of the Receiver buffer.

TRANFERDATA M bytes
When D is 0, this is an array of M bytes of data where M is TRANSFERLENGTH. When D is 1, there is
no TRANSFERDATA and M is 0.

0
By

te
SEQNUM1

2
3
4
5

TRANSFERLENGTH

6
7

11 + M

TRANSFERDATA

Bit

ENDPOINTD Rsvd

8
9

10
11
12

BINTERVAL

7610 5432

 29 VSF TR-10-14

Table 11: USB Bulk or Interrupt Submit message DATA fields

9.16 USB	Interrupt	Submit	
USB Interrupt Submit message can be sent by a Receiver when it has sent a USB Stream Status
message. USB Interrupt Submit message shall be sent only on Interrupt Endpoint. The DATA
field of the message is shown in Figure 19. Fields of the DATA field shall be as described in
Table 11.

For Receiver-to-Sender data transfer, the TRANFERDATA shall be the Interrupt Data as defined
in section 4.7.3 “Interrupt Transfers” of the USB 2.0 specification.

9.17 USB	Isochronous	Submit	
USB Isochronous Submit message can be sent by a Receiver when it has sent a USB Stream
Status message. USB Isochronous Submit message shall be sent only on Isochronous Endpoint.
The DATA field of the message is shown in Figure 20. Fields of the DATA field shall be as
described in Table 12.

0

Bit

By
te

SEQNUM1
2
3
4
5

NUMBEROFPACKETS

6
7
8
9

10
11
12
13
14
15
16

STARTFRAME

ISOPACKETDESCSUB

TRANSFERDATA

15 + N * 2
16 + N * 2

15 + N * 2 + M

EndPointD Rsvd

A

BINTERVAL

7610 5432

 30 VSF TR-10-14

Figure 20: USB Isochronous Submit message

Field Size Description

SEQNUM 3 bytes
Sequential number that identifies the USB Submit. The value for the first request sent on this data
channel shall be 0. This value shall be incremented by one from the SEQNUM value of the previous
Submit message sent on this data channel.

ENDPOINT 4 bits Device Endpoint number.
Rsvd 3 bits Reserved. This field shall be set to 0 by a Receiver and shall be ignored by a Sender.

D 1 bit
Direction. This bit shall be set to 0 to indicate the OUT (Receiver-to-Sender) Endpoint and shall be
set to 1 to indicate the IN Endpoint (Sender-to-Receiver).

BINTERVAL 4 bytes
Interval for polling Endpoint for data transfers. Refer to Table 9-13 of USB 2.0 specification for more
information about this field.

A 1 bit
When this bit is 0 the Isochronous transfer shall be started at the frame specified by STARTFRAME.
When this bit is 1, the Isochronous transfer shall be started as soon as possible.

STARTFRAME 31 bits
Specifies the frame number of the first packet of this submit shall begin on when A is 0. This variable
must be within a system-defined range of the current frame. If A is 1, this field shall be set to 0 by
the Receiver and shall not be used by the Sender.

NUMBEROFPACKETS 4 bytes Number of isochronous frame of this Submit message.

ISOPACKETDESCSUB N * 2 bytes
This is an array of N ISOLENGTH as defined in Figure 22 and Table 13 where N is
NUMBEROFPACKETS.

TRANFERDATA M bytes
When D is 0, this is an array of M bytes of data where M shall be the size of the isochronous
TRANFERDATA of Figure 21. When D is 1, there is no TRANSFERDATA and M is 0.

Table 12: USB Isochronous Submit message DATA fields

By
te

ISODATA of packet 1

Bit

ISODATA of packet 2

ISODATA of packet N

L[0]

L[0] + L[1]

L[i] - 1

L[i] - L[N]

7610 5432
0

 31 VSF TR-10-14

Figure 21: Isochronous TRANSFERDATA

For Receiver-to-Sender data transfer, the TRANFERDATA is the concatenation of the
isochronous data for all isochronous packets of this Submit as shown in Figure 21. The message
transports the information for multiple isochronous packets where [i] represents the index that
selects an isochronous packet starting with 0 for the first packet and ending with N – 1 for the
last packet. The size of each isochronous data L[i] is given by the corresponding field
ISOLENGTH[i] as shown in Figure 22 and Table 13. The ISODATA is defined in section 4.7.4
“Isochronous Transfers” of the USB 2.0 specification.

Figure 22: ISOLENGTH

Field Size Description

ISOLENGTH 16 bits

Isochronous Data size in bytes. The maximum value is 1024.
On Receiver-to-Sender Transfer Data (D = 0), This field shall be set to the exact amount of data of the
corresponding packet.
On Sender-to-Receiver data transferred (D = 1), this field shall indicate the maximum size of the
returned data in the corresponding packet to prevent overflow of the Receiver buffer.

Table 13: ISOLENGTH field

9.18 USB	Control	Submit	Return	
USB Control Submit Return message shall be sent by a Sender in response to a USB Control
Submit message. The DATA field of the message is shown in Figure 23. Fields of the DATA
field shall be as described in Table 14.

For Sender-to-Receiver data transfer, the TRANFERDATA is the data as given by Table 9-3 of
the USB 2.0 specification.

1

Bit

ISOLENGTH0
7610 5432

 32 VSF TR-10-14

Figure 23: USB Control, Bulk, or Interrupt Submit Return message

Field Size Description

SEQNUM 3 bytes
Sequential number that identifies the USB Submit Return. This value shall match the SEQNUM value of
the corresponding USB Submit message.

ENDPOINT 4 bits
Device Endpoint number. This value shall match the ENDPOINT value of the corresponding USB Submit
message.

Rsvd 3 bits Reserved. This field shall be set to 0 by a Sender and shall be ignored by a Receiver.
D 1 bit Direction. This value shall match the D value of the corresponding USB Submit message.

ACTUALLENGTH 4 bytes

Specifies the length of the TRANFERDATA.
When D is 0, this field shall be 0.
When D is 1, the Sender shall never return more data than is indicated by the TRANSFERLENGTH value
of the corresponding Submit request; it may return less. For USB Control Submit, the
TRANSFERLENGTH field shall be set to the value of wLength as given by Table 9-3 of the USB 2.0
specification.
If this field is zero, there is no data.

RSTATUS 4 bytes Request Status. Refer to appendix A.1 for RSTATUS status code values.

TRANFERDATA M bytes
This is an array of M bytes of data where M is ACTUALLENGTH. The content of the TRANFERDATA
depends on the Submit Return type.

Table 14: USB Control, Bulk, or Interrupt Submit Return message DATA fields

9.19 USB	Bulk	Submit	Return	
USB Bulk Submit Return message shall be sent by a Sender in response to a USB Bulk Submit
message. The DATA field of the message is shown in Figure 23. Fields of the DATA field shall
be as described in Table 14.

0

Bit

B
yt

e

SEQNUM1
2
3
4
5

RSTATUS

ACTUALLENGTH6
7
8
9

10
11

TRANSFERDATA

12

11 + M

ENDPOINTD Rsvd

7610 5432

 33 VSF TR-10-14

For Sender-to-Receiver data transfer, the TRANFERDATA is the Bulk data as defined in section
4.7.2 “Bulk Transfers” of the USB 2.0 specification.

9.20 USB	Interrupt	Submit	Return	
USB Interrupt Submit Return message shall be sent by a Sender in response to a USB Interrupt
Submit message. The DATA field of the message is shown in Figure 23. Fields of the DATA
field shall be as described in Table 14.

For Sender-to-Receiver data transfer, the TRANFERDATA is the Interrupt data as defined in
section 4.7.3 “Interrupt Transfers” of the USB 2.0 specification.

9.21 USB	Isochronous	Submit	Return	
USB Isochronous Submit Return message shall be sent by a Sender in response to a USB
Isochronous Submit message. The DATA field of the message is shown in Figure 24. Fields of
the DATA field shall be as described in Table 15.

Figure 24: USB Isochronous Submit Return message

0

Bit

By
te

SEQNUM1
2
3
4
5

NUMBEROFPACKETS

6
7
8
9

10
11
12
13
14
15
16

ERRORCOUNT

STARTFRAME

15 + N * 2
16 + N * 2

15 + N * 2 + M

ENDPOINTD Rsvd

ISOPACKETDESCRET

TRANSFERDATA

7610 5432

 34 VSF TR-10-14

Field Size Description

SEQNUM 3 bytes
Sequential number that identifies the USB Submit Return. This value shall match the SEQNUM value of
the corresponding USB Submit message.

ENDPOINT 4 bits
Device Endpoint number. This value shall match the ENDPOINT value of the corresponding USB Submit
message.

Rsvd 3 bits Reserved. This field shall be set to 0 by a Sender and shall be ignored by a Receiver.
D 1 bit Direction. This value shall match the D value of the corresponding USB Submit message.
STARTFRAME 4 bytes Specifies the frame number of the first packet of this submit return.
ERRORCOUNT 4 bytes Number of packets of this Submit Return that completed with an error condition.

NUMBEROFPACKETS 4 bytes
Number of Isochronous frame of this Submit Return. This value shall be identical to the
NUMBEROFPACKETS value of the corresponding USB submit message.

ISOPACKETDESCRET N * 6 bytes
This is an array of N ISOPACKETRETSTRUC structure as defined in Figure 25 and Table 16 where N is
NUMBEROFPACKETS.

TRANFERDATA M bytes
When D is 1, this is an array of M bytes of data where M shall be the size of the Isochronous Transfer
Data of Figure 21. When D is 0, there is no TRANSFERDATA and M is 0.

Table 15: USB Isochronous Submit Return message DATA fields

for Sender-to-Receiver data transfer, the TRANFERDATA is the concatenation of the
Isochronous data of all Isochronous transfer of this Submit Return as shown in Figure 21. The
message transports the information for multiple Isochronous packets where [i] represents the
index that selects an Isochronous packet starting with 0 for the first packet and ending with N – 1
for the last packet. The size of each Isochronous Data L[i] is given by the
ISOACTUALLENGTH value of the corresponding entry of ISOPACKETDESCRET as shown
in Figure 25 and Table 16. The Isochronous Data is defined in section 4.7.4 “Isochronous
Transfers” of the USB 2.0 specification.

Figure 25: ISOPACKETRETSTRUC

Field Size Description

ISOACTUALLENGTH 2 bytes
Isochronous Data size in bytes. When D is 1, this value shall be smaller or equal to the value of
ISOLENGTH[i] of the correspondent Submit. When D is 0, this value shall be 0.

ISOSTATUS 4 bytes Isochronous status. Refer to appendix A.1 for ISOSTATUS status code values.

Table 16: ISOPACKETRETSTRUC fields

B
yt
e

0

Bit

ISOACTUALLENGTH1

ISOSTATUS4
5

2
3

7610 5432

 35 VSF TR-10-14

9.22 USB	Cancel	Submit	
USB Cancel Submit message can be sent by a Receiver when it has sent a USB Submit message.
The DATA field of the message is shown in Figure 26. Fields of DATA field shall be as
described in Table 17.

Figure 26: USB Cancel Submit message

Field Size Description

SEQNUM 3 bytes
Sequential number that identifies the USB Cancel Submit. This value shall match the SEQNUM of the
USB Submit to Cancel.

ENDPOINT 4 bits Device Endpoint number. This value shall match the ENDPOINT of the USB Submit to Cancel.
Rsvd 3 bits Reserved. This field shall be set to 0 by a Sender and shall be ignored by a Receiver.
D 1 bit Direction. This value shall match the D of the USB Submit to Cancel.

Table 17: USB Cancel Submit message DATA fields

9.23 USB	Cancel	Submit	Return	
USB Cancel Submit Return message shall be sent by a Sender in response to a USB Cancel
Submit message. The DATA field of the message shall have a fixed size of 7 bytes as shown in
Figure 27. Fields of the DATA field shall be as described in Table 18.

Figure 27: USB Cancel Submit Return message

Field Size Description

SEQNUM 3 bytes
Sequential number that identifies the USB Submit Return. This value shall match the SEQNUM value of
the corresponding USB Cancel Submit message.

ENDPOINT 4 bits
Device Endpoint number. This value shall match the ENDPOINT value of the corresponding USB Cancel
Submit message.

Rsvd 3 bits Reserved. This field shall be set to 0 by a Sender and shall be ignored by a Receiver.
D 1 bit Direction. This value shall match the D value of the corresponding USB Cancel Submit message.
RSTATUS 4 bytes Request Status. Refer to appendix A.1 for RSTATUS status code values.

0

Bit

By
te SEQNUM1

2
3 ENDPOINTD Rsvd

7610 5432

0

Bit

By
te

SEQNUM1
2
3
4
5
6
7

RSTATUS

ENDPOINTD Rsvd

7610 5432

 36 VSF TR-10-14

Table 18: USB Cancel Submit Return message DATA fields

10 Sharing	access	to	USB	devices	
There are multiple cases: a Sender can be connected to a Receiver, Multiple Senders can be
connected to a Receiver, or a Sender can be connected to multiple Receivers. In all cases, the
communication between the Sender and the Receiver is unicast such that if multiple Senders are
connected to a Receiver, or if a Sender is connected to multiple Receivers, each pair of
Sender/Receiver shall use a different set of communication channels. A Receiver shall connect to
each individual Sender. Reciprocally, a Sender should accept the connection of each individual
Receiver.

Senders and Receivers may have a limit on the number of simultaneous connections they can
support. When this limit is reached, a Receiver shall not try to connect to a new Sender and a
Sender shall fail to accept a Receiver’s connection.

11 Heartbeat	
A Sender shall send a Heartbeat message once per Heartbeat_Period. The Heartbeat_Period is
specified by HBEAT field of the Sender Connection Status message. The following formula
shall be used to convert HBEAT index into seconds:

 Heartbeat_Period = 5 sec. * 1.25HBEAT

A Receiver shall consider that the Sender is not responding if a Heartbeat message is not
received on the control channel within two times the Heartbeat_Period as calculated from the last
Heartbeat message.

A non-responsive Sender shall be disconnected by the Receiver if it is not responding, and the
Sender device shall loose its exclusive state.

12 Encryption	
When encryption and authentication are not used, the privacy attribute shall not appear in the
Sender’s SDP transport file. The Sender’s privacy parameters shall either not appear in the
NMOS transport parameters or the protocol and mode of the NMOS transport parameters shall
be set to NULL.

When encryption and authentication are used, TR-10-13 Privacy Encryption Protocol (PEP) shall
be used for managing the encryption keys and protecting the USB control and data channels. The
privacy attribute shall appear in the SDP transport file. The privacy parameters shall appear in
the NMOS transport parameters and the protocol and mode of the NMOS transport parameters

 37 VSF TR-10-14

shall not be set to NULL. Senders and Receivers shall support the AES-128-CTR_CMAC-64-
AAD mode.

Other encryption and authentication methods compatible with the message layout may be used.
The mode parameter shall be one of AES-128-CTR_CMAC-64-AAD, AES-256-CTR_CMAC-
64-AAD, ECDH_AES-128-CTR_CMAC-64-AAD, ECDH_AES-256- CTR_CMAC-64-AAD.

The CMAC function used for authentication shall use the privacy cipher key. When the key is
128 bits the CMAC function shall use the AES-128 block cipher. When the key is 256 bits the
CMAC function shall use the AES-256 block cipher.

Figure 8 shows which portion of the message is authenticated and which portion of the message
is encrypted. The message is first signed and then encrypted storing the encrypted MAC as the
last 8 bytes of the message.

During the encryption process, the portion of the message to be encrypted shall be divided in
slices of 16 bytes and padding bytes are added at the end if the message is not a multiple of 16
bytes. These extra padding bytes shall be discarded and shall not be considered as part of the
message.

The encryption key shall correspond to the privacy_key in the Privacy Key Derivation section of
the PEP specification. Within channels, SUBSTREAMID is paired as specified by the PEP
specification for bidirectional streams. SUBSTREAMID shall be unique at any time such that the
iv’ is unique as required by PEP.

The KEYVERSION and the CTR values are included in the header of the message as shown in
Figure 8. At each TCP session, when the connection is accepted, the Sender shall increment the
KEYVERSION and shall reset the CTR value to 0.

13 Wake-on-LAN	
Wake-on-LAN shall be generated by the Sender when a USB resume condition is detected on the
Sender USB connector and the Wake-on-LAN is activated by the Wake-up Control message. In
such a case a Wake-on-LAN packet is sent from the Sender to the Receiver with the data
included in the Wake-up Control message.

14 USB-SDP	definition	
The SDP shall follow RFC 4145 with the following restrictions:

 38 VSF TR-10-14

The media space port of the media-field shall be set to “application/usb”

m=application <port> TCP usb

<port>: TCP server port of the Sender

When Encryption and Authentication are used, the privacy attribute as defined in TR10-13 shall
be present with:

<protocol>: USB_KV

<mode>: Valid mode as defined in section 12

The ‘role’ of the ‘setup’ attribute shall be “passive”.

a=setup:passive

14.1 SDP	example	(informative)	
v=0

o=- 1689604996 1246597654 IN IP4 192.168.152.182

s= Device MTX12345 usb 0

t=0 0

m=application 27502 TCP usb

c=IN IP4 192.168.152.182

a=privacy:protocol=USB_KV; mode=AES-128-CTR_CMAC-64-AAD; iv=181d3f3236be89b0;
key_generator=836b4d6eb7cbd16055c6c827237faf97; key_version=2d9bc4e0;
key_id=0001020304050607

a=setup:passive

15 IS-05	NMOS	Transport	Parameter	

15.1 Sender	

This section describes the USB Sender transport parameters. At a minimum, a USB Sender shall
support “source_ip”, “source_port” in addition to the PEP privacy parameters when PEP is used.

 39 VSF TR-10-14

"source_ip": IP address of the TCP server of the Sender.

"source_port": Port of the TCP server of the Sender.

15.2 Receiver	

This section describes the USB Receiver transport parameters. A USB Receiver shall support at
least “source_ip”, “interface_ip” and “source_port” in addition to the PEP privacy parameters
when PEP is used.

"source_ip": IP address of the TCP server of the Sender.

"source_port": Port of the TCP server of the Sender.

"interface_ip": IP address the TCP client of the Receiver.

Appendix	A Software	interface	information	

A.1	 Status	code	
The status code reports the status of the transfer as shown in Table 19. The status code shall be
IPMX_USB_STATUS_SUCCESS if the transfer has completed successfully. When the transfer
fail, Senders shall send an error code from Table 17. If an implementation has an error code that
doesn’t match one of the entries in Table 17, IPMX_USB_STATUS_UNKNOWN_ERROR
shall be used.

Value Name Description

0x00000000 IPMX_USB_STATUS_SUCCESS Data transfer completed successfully.
0xC0000001 IPMX_USB_STATUS_CRC CRC error (defined for backward compatibility with the USB 1.0).
0xC0000002 IPMX_USB_STATUS_BTSTUFF BTS error (defined for backward compatibility with the USB 1.0).
0xC0000003 IPMX_USB_STATUS_DATA_TOGGLE_MISMATCH Data toggle mismatch.

0xC0000004 IPMX_USB_STATUS_STALL_PID
The device returned a stall packet identifier (defined for backward
compatibility with the USB 1.0).

 40 VSF TR-10-14

0xC0000005 IPMX_USB_STATUS_DEV_NOT_RESPONDING
The device is not responding (defined for backward compatibility with
the USB 1.0).

0xC0000006 IPMX_USB_STATUS_PID_CHECK_FAILURE
The device returned a packet identifier check failure (defined for
backward compatibility with the USB 1.0).

0xC0000007 IPMX_USB_STATUS_UNEXPECTED_PID
The device returned an unexpected packet identifier error (defined for
backward compatibility with the USB 1.0).

0xC0000008 IPMX_USB_STATUS_DATA_OVERRUN
The device returned a data overrun error (defined for backward
compatibility with the USB 1.0).

0xC0000009 IPMX_USB_STATUS_DATA_UNDERRUN
The device returned a data underrun error (defined for backward
compatibility with the USB 1.0).

0xC000000C IPMX_USB_STATUS_BUFFER_OVERRUN
The device returned a buffer overrun error (defined for backward
compatibility with the USB 1.0).

0xC000000D IPMX_USB_STATUS_BUFFER_UNDERRUN
The device returned a buffer underrun error (defined for backward
compatibility with the USB 1.0).

0xC000000F IPMX_USB_STATUS_NOT_ACCESSED
The USB stack could not access the device (defined for backward
compatibility with the USB 1.0).

0xC0000010 IPMX_USB_STATUS_FIFO
The device returned a FIFO error (defined for backward compatibility
with the USB 1.0).

0xC0000011 IPMX_USB_STATUS_XACT_ERROR
The device returned a transaction error (defined for backward
compatibility with the USB 1.0).

0xC0000012 IPMX_USB_STATUS_BABBLE_DETECTED
The device returned a babble detected error (defined for backward
compatibility with the USB 1.0).

0xC0000013 IPMX_USB_STATUS_DATA_BUFFER_ERROR
Hardware status codes that range from 0x00000001 to 0x000000FF
(defined for backward compatibility with the USB 1.0 stack).

0xC0000014 IPMX_USB_STATUS_NO_PING_RESPONSE
No response was received from the device for a ping packet sent by the
Host.

0xC0000015 IPMX_USB_STATUS_INVALID_STREAM_TYPE The stream type is invalid for the Endpoint.
0xC0000016 IPMX_USB_STATUS_INVALID_STREAM_ID The stream identifier is invalid.
0xC0000030 IPMX_USB_STATUS_ENDPOINT_HALTED A transfer was submitted to an Endpoint that is stalled.
0x80000200 IPMX_USB_STATUS_INVALID_URB_FUNCTION Invalid URB function.
0x80000300 IPMX_USB_STATUS_INVALID_PARAMETER Invalid parameter.

0x80000400 IPMX_USB_STATUS_ERROR_BUSY
The client driver caused an error by attempting to close an Endpoint,
interface, or configuration handle with outstanding transfers.

0x80000500 IPMX_USB_STATUS_REQUEST_FAILED The hub driver cannot complete a URB request.
0x80000600 IPMX_USB_STATUS_INVALID_PIPE_HANDLE Invalid pipe handle.
0x80000700 IPMX_USB_STATUS_NO_BANDWIDTH There was not enough bandwidth to open a requested Endpoint.
0x80000800 IPMX_USB_STATUS_INTERNAL_HC_ERROR Unspecified Host controller error.

0x80000900 IPMX_USB_STATUS_ERROR_SHORT_TRANSFER
The transfer ended with a short packet, but the
USBD_SHORT_TRANSFER_OK bit is not set for the pipe.

0xC0000A00 IPMX_USB_STATUS_BAD_START_FRAME
The requested start frame is not within the range of
USBD_ISO_START_FRAME_RANGE frames of the current USB frame.
Whenever this error occurs, the system sets the stall bit on the pipe.

0xC0000B00 IPMX_USB_STATUS_ISOCH_REQUEST_FAILED
The Host controller returns this error whenever all packets in an
isochronous transfer complete with an error.

0xC0000C00 IPMX_USB_STATUS_FRAME_CONTROL_OWNED
The hub driver returns this error whenever the frame length control for
the Host controller is being used by a driver other than the Host
controller driver.

0xC0000D00 IPMX_USB_STATUS_FRAME_CONTROL_NOT_OWNED
The hub driver returns this error if the caller does not own frame length
control and attempts to release or modify the Host controller frame
length.

0xC0000E00 IPMX_USB_STATUS_NOT_SUPPORTED The request was not supported.
0xC0000F00 IPMX_USB_STATUS_INVALID_CONFIGURATION_DESCRIPTOR Invalid configuration descriptor.
0xC0001000 IPMX_USB_STATUS_INSUFFICIENT_RESOURCES Insufficient resources.
0xC0002000 IPMX_USB_STATUS_SET_CONFIG_FAILED An attempt to change the device configuration failed.
0xC0003000 IPMX_USB_STATUS_BUFFER_TOO_SMALL The buffer is too small.
0xC0004000 IPMX_USB_STATUS_INTERFACE_NOT_FOUND The interface was not found.

 41 VSF TR-10-14

0xC0005000 IPMX_USB_STATUS_INAVLID_PIPE_FLAGS Invalid pipe flags.
0xC0006000 IPMX_USB_STATUS_TIMEOUT The request timed out.
0xC0007000 IPMX_USB_STATUS_DEVICE_GONE The device is no longer present in the system.
0xC0008000 IPMX_USB_STATUS_STATUS_NOT_MAPPED The device bus address is not mapped to system memory.
0xC0009000 IPMX_USB_STATUS_HUB_INTERNAL_ERROR The device bus address is not mapped to system memory.

0xC0010000 IPMX_USB_STATUS_CANCELED
The USB stack reports this error whenever it completed a transfer
because of an AbortPipe request from the client driver.

0xC0020000 IPMX_USB_STATUS_ISO_NOT_ACCESSED_BY_HW
The Host controller did not access the transfer descriptor (TD) that is
associated with this packet. The USB stack reports this error in the
packet status field of an isochronous transfer packet.

0xC0030000 IPMX_USB_STATUS_ISO_TD_ERROR
The Host controller reported an error in the transfer descriptor (TD). The
USB stack reports this error in the packet status field of an isochronous
transfer packet.

0xC0040000 IPMX_USB_STATUS_ISO_NA_LATE_USBPORT
The client driver submitted the packet on time, but the packet failed to
reach the miniport driver on time. The USB stack reports this error in the
packet status field of an isochronous transfer packet.

0xC0050000 IPMX_USB_STATUS_ISO_NOT_ACCESSED_LATE
The client driver did not submit the packet on time. The USB stack
reports this error in the packet status field of an isochronous transfer
packet.

0xC0100000 IPMX_USB_STATUS_BAD_DESCRIPTOR Invalid descriptor.
0xC0100001 IPMX_USB_STATUS_BAD_DESCRIPTOR_BLEN Invalid descriptor length.
0xC0100002 IPMX_USB_STATUS_BAD_DESCRIPTOR_TYPE Invalid descriptor type.
0xC0100003 IPMX_USB_STATUS_BAD_INTERFACE_DESCRIPTOR Invalid interface descriptor.
0xC0100004 IPMX_USB_STATUS_BAD_ENDPOINT_DESCRIPTOR Invalid interface descriptor.
0xC0100005 IPMX_USB_STATUS_BAD_INTERFACE_ASSOC_DESCRIPTOR Invalid interface association descriptor.
0xC0100006 IPMX_USB_STATUS_BAD_CONFIG_DESC_LENGTH Invalid configuration descriptor length.
0xC0100007 IPMX_USB_STATUS_BAD_NUMBER_OF_INTERFACES Invalid number of interfaces.
0xC0100008 IPMX_USB_STATUS_BAD_NUMBER_OF_ENDPOINTS Invalid number of Endpoints.
0xC0100009 IPMX_USB_STATUS_BAD_ENDPOINT_ADDRESS Invalid Endpoint address.

0xFFFFFFFF IPMX_USB_STATUS_UNKNOWN_ERROR Unknown error.

Table 19: Status code values

