2110 Routing and Monitor System

Michael Bany, Fox Sports
Vidtrans 2019

Overall architecture of our facility.

- Two completely diverse video routers
 - Every source is fed to both router either directly or via a DA
- We replaced one router with a new larger baseband router in 2015
- The original plan was to replace the other with a baseband router.
- As the 2110 standard was maturing we decided to go with an IP based 2110 router

Why IP vs Baseband?

- Risk was low due to our diverse router systems.
- Route individual components of a source
- Monitoring Capabilities
- Network DA capability
- Wiring density
- Distribution of ports closer to equipment
- Elimination of significant amount of coax

IP Video Router Requirements

- 2110 based
- Control with existing facility Control Panels
- 2022-7 Hitless
- Gateways support IP-IP, IP-SDI, SDI-IP
- Ease of Monitoring
 - Legacy Monitoring infrastructure is significant
- 1152x1152 SDI Gateway Ports
- SD support is not a requirement

Router Network Architecture

- 2110 IP Router Network
- IP-IP connections

2110 IP Router Network

2110 IP Router Network

2110 IP Router Gateway

2110 IP Router Gateway

IP-IP Connections

- Some number of gateways will be dedicated to IP only.
- Using separate VLANs for the outside connection and the core connection to keep traffic and interactions separate on the same physical interface.
- Monitor point
- Simplifies control of third party devices
- Allows for additional transformations in the future (eg Frame Sync, Up/Down Cross etc)

Timing

- Delay somewhere less than a frame, but we expect it will have to be an entire frame every time we pass through the router.
- PTP Architecture
 - Dedicated PTP distribution switches
 - Disable Layer2 on all ports
 - Change default domain

PTP Architecture

Future 2110 Connections

- CC Encoders
- AFD
- SCTE
- TBD

Router Control Architecture

- Integrate with existing workflows and systems
- Levels
- Sources and Destinations
- Virtual Sources and Destinations

Router Levels

SNP98	577	SNP98 1	4609	SNP98 1A1	4610	SNP98 1A2	4611	5NP98 1A3	4612	5NP98 1A4	4613	5NP98 1A5	4614	SNP98 1A6	4615	SNP98 1A7	4616	5NP98 1A8
SNP98		-	4609	SNP98 1A1	4609	SNP98 1A1	4609	SNP98 1A1	4609	SNP98 1A1	4609	SNP98 1A1	4609	SNP98 1A1	4609	SNP98 1A1	4609	SNP98 1A1
SNP98		~ ····	4610	SNP98 1A2	4610	SNP98 1A2	4610	SNP98 1A2	4610 +	SNP98 1A2	4610	SNP98 1A2						
SNP98		· · · · · · · · · · · · · · · · · · ·	4611	SNP98 1A3	4611	SNP98 1A3	4611	SNP98 1A3	4611	SNP98 1A3	4611	SNP98 1A3	4611	SNP98 1A3	4611	SNP98 1A3	4611	SNP98 1A3
SNP98		-	4612	SNP98 1A4	4612	SNP98 1A4	4612	SNP98 1A4	4612	SNP98 1A4	4612	SNP98 1A4	4612	SNP98 1A4	4612	SNP98 1A4	4612	SNP98 1A4
SNP98		<u> </u>	4613	SNP98 1A5	4613	SNP98 1A5	4613	SNP98 1A5	4613	SNP98 1A5	4613	SNP98 1A5	4613	SNP98 1A5	4613	SNP98 1A5	4613	SNP98 1A5
SNP98		<u> </u>	4614	SNP98 1A6	4614	SNP98 1A6	4614	SNP98 1A6	4614	SNP98 1A6	4614	SNP98 1A6	4614	SNP98 1A6	4614	SNP98 1A6	4614	SNP98 1A6
SNP98		·····	4615	SNP98 1A7	4615	SNP98 1A7	4615	SNP98 1A7	4615	SNP98 1A7	4615	SNP98 1A7	4615	SNP98 1A7	4615	SNP98 1A7	4615	SNP98 1A7
SNP98		· · · · ·	4616	SNP98 1A8	4616	SNP98 1A8	4616	SNP98 1A8	4616	SNP98 1A8	4616	SNP98 1A8	4616	SNP98 1A8	4616	SNP98 1A8	4616	SNP98 1A8

Sources and Destinations

Name	Туре	Inputs	Outputs	Level	
	‡	‡	+	+	
VIPR-AUDIO1	3RD-PARTY-RO	9216	1152	Α	
VIPR-AUDIO2	3RD-PARTY-RO	9216	1152	В	
VIPR-AUDIO3	3RD-PARTY-RO	9216	1152	С	
VIPR-AUDIO4	3RD-PARTY-RO	9216	1152	D	
VIPR-AUDIO5	3RD-PARTY-RO	9216	1152	E	
VIPR-AUDIO6	3RD-PARTY-RO	9216	1152	F	
VIPR-AUDIO7	3RD-PARTY-RO	9216	1152	G	
VIPR-AUDIO8	3RD-PARTY-RO	9216	1152	Н	
VIPR-DATA1-SC	3RD-PARTY-RO	1152	1152	I	
VIPR-DATA2-CC	3RD-PARTY-RO	1152	1152	J	
VIPR-DATA3-AF	3RD-PARTY-RO	1152	1152	K	
VIPR-VIDEO	3RD-PARTY-RO	1152	1152	V	

Virtual Sources and Destinations

# ^	Name	Video	A1 0 🗑	A2 0 🗇	A3 0 🗇	A4 0 🗑
1	SNP01-SRC01	SNP01-SRC01-V1	SNP01-SRC01-A1-L1	SNP01-SRC01-A2-L2	SNP01-SRC01-A3-L3	SNP01-SRC01-A4-L4
2	SNP01-SRC02	SNP01-SRC02-V1	SNP01-SRC02-A1-L1	SNP01-SRC02-A2-L2	SNP01-SRC02-A3-L3	SNP01-SRC02-A4-L4
3	SNP01-SRC03	SNP01-SRC03-V1	SNP01-SRC03-A1-L1	SNP01-SRC03-A2-L2	SNP01-SRC03-A3-L3	SNP01-SRC03-A4-L4
4	SNP01-SRC04	SNP01-SRC04-V1	SNP01-SRC04-A1-L1	SNP01-SRC04-A2-L2	SNP01-SRC04-A3-L3	SNP01-SRC04-A4-L4
5	SNP01-SRC05	SNP01-SRC05-V1	SNP01-SRC05-A1-L1	SNP01-SRC05-A2-L2	SNP01-SRC05-A3-L3	SNP01-SRC05-A4-L4
6	SNP01-SRC06	SNP01-SRC06-V1	SNP01-SRC06-A1-L1	SNP01-SRC06-A2-L2	SNP01-SRC06-A3-L3	SNP01-SRC06-A4-L4
7	SNP01-SRC07	SNP01-SRC07-V1	SNP01-SRC07-A1-L1	SNP01-SRC07-A2-L2	SNP01-SRC07-A3-L3	SNP01-SRC07-A4-L4
8	SNP01-SRC08	SNP01-SRC08-V1	SNP01-SRC08-A1-L1	SNP01-SRC08-A2-L2	SNP01-SRC08-A3-L3	SNP01-SRC08-A4-L4
9	SNP01-SRC09	SNP01-SRC09-V1	SNP01-SRC09-A1-L1	SNP01-SRC09-A2-L2	SNP01-SRC09-A3-L3	SNP01-SRC09-A4-L4
10	SNP01-SRC10	SNP01-SRC10-V1	SNP01-SRC10-A1-L1	SNP01-SRC10-A2-L2	SNP01-SRC10-A3-L3	SNP01-SRC10-A4-L4
11	SNP01-SRC11	SNP01-SRC11-V1	SNP01-SRC11-A1-L1	SNP01-SRC11-A2-L2	SNP01-SRC11-A3-L3	SNP01-SRC11-A4-L4
12	SNP01-SRC12	SNP01-SRC12-V1	SNP01-SRC12-A1-L1	SNP01-SRC12-A2-L2	SNP01-SRC12-A3-L3	SNP01-SRC12-A4-L4
13	SNP01-SRC13	SNP01-SRC13-V1	SNP01-SRC13-A1-L1	SNP01-SRC13-A2-L2	SNP01-SRC13-A3-L3	SNP01-SRC13-A4-L4
14	SNP01-SRC14	SNP01-SRC14-V1	SNP01-SRC14-A1-L1	SNP01-SRC14-A2-L2	SNP01-SRC14-A3-L3	SNP01-SRC14-A4-L4

Monitor Requirements

- Requirements
 - Source types
 - 2110 Video, Audio, Ancillary(SCTE, AFD, CC)
 - 2022-6
 - H.264, MPEG2, J2K
 - DVI/HDMI
 - Destination types
 - 2110
 - H.264
 - Visual output in addition to Alarm delivery.

Monitoring Control

- 576 Uncompressed Sources
- 250 Compressed Sources
- For an event.
 - H.264 of inbound transmission, Uncompressed Frame sync output,
 Uncompressed control room output, Compressed distribution all next to each other.
- How to automate the monitoring so you see what you want when you want.

Monitoring Capabilities

- Monitoring streams
 - CC
 - SCTE
 - Audio
 - Video
 - IP Stream
 - Timing
- Recording the mosaics

Monitoring Network

Interconnect Monitor network with Router

- The core of the Video router is based on IGMP.
- The bigger an IGMP network gets, the more problems you can have.
- PIM adds additional complexities.
- Used static Joins for all sources to edge ports on TAG network.
- Interconnects on TAG switches to be routed interfaces to prevent IGMP or spanning tree interaction.

Monitor System

Monitor System

Monitor System

Testing and Production

- Utilizing Dataminer for monitoring
- Verify telemetry of all equipment
- Monitor systems while building
- Monitor systems while causing failures

Thank You

