Video Services Forum ST 2110 over WAN activity group

Chair: Andy Rayner, Chief Technologist, Nevion arayner@nevion.com +44 7711 196609

http://vsf.tv/SMPTE ST 2110 over WAN.shtml

Key Activity Group Objective & timings

"To enable effective transport of ST2110 media flows and associated control data across Wide Area Networks *in an interoperable manner*."

ST2110->WAN

Phase 1: NAB 2019

Phase 2: IBC 2019

Activity Group Team represents:

Vendors: Nevion, Imagine, GV, Evertz, Netinsight, Matrox, Medialinks,
 Mellanox, Packetstorm, Intopix, Sony, Artel

• Users: BT, BBC, ESPN, AT&T, Century Link, Zayo

• Others: IRT

The LAN-WAN Gateway

Key user scenarios:

Inter-company facilities connectivity Intra-company facilities connectivity Event remote production connectivity

ST2110 over WAN for inter-facility & OBs

- Flow protection
- Flow trunking
- Essence alignment
- Low latency handling
- Format conversion
- Compression

- Protection of other data flows
- Security
- PTP trunking
- Wan timing
- Associated control (NMOS) filtering and border proxying

ST2110-WAN: Protection

- Dual path protection will use ST2022-7
- FEC on individual essence flows (all media types) will use bounded ST2022-5
 - Receivers shall support a matrix product of at least 100
 - Transmitters shall be configurable to use a matrix whose product is 100 or less
- Single FEC 2D column-only (as opposed to 1D which is inherently row based)
- FEC on trunk (the GRE over RTP option) will use the same restrictions as above
- Aim to keep latency as low as possible (important for low bit rate flows)
- RIST for OTT transport could be explored later

Flow protection #1 - SMPTE2022-7 based

Flow protection #2 – FEC – ST2022-5 based constrained to LxD product of 100 maximum

n	n+1	n+2	n+3	
n+4	n+5	n+6	n+7	
n+8	n+9	n+10	n+11	
n+12	n+13	n+14	n+15	
n+16	n+17	n+18	n+19	
n+20	n+21	n+22	n+23	
n+24	n+25	n+26	n+27	
n+28	n+29	n+30	n+31	
n+32	n+33	n+34	n+35	
n+36	n+37	n+38	n+39	
n+40	n+41	n+42	n+43	

ST2110-WAN: Flow trunking

- Common routing of all essences
- High aggregate bit rate gives low latency when using FEC
- Easier for Service provider handling
- Trunking using GRE (RFC2784) over RTP (RFC3550) with 2110-style SN extension
 - Use for cases where protection is needed at the trunk layer
 - This needs to be defined (see proposal in subsequent slide)
 - Use 2022-7 for RTP merge and (constrained) 2022-5 for FEC (as per previous slide)
 - Consideration for RFC submission (not necessary precedent exists)

Trunking essences

Trunking encapsulation

2022-7 protection at essence or trunk

GRE over RTP

RTP RTP HDR SN	RTP TSTP	RTP SSRC	RTP SNE	RTP ID	GRE HDR	GRE PTY	F	Payload (IP or E	thernet)	
0 0 1 2 3 +-+-+ V=2 P X	+-+-+-+-	+-+-+-	-+-+-	5 6 ' +-+-+-	-+-+-	+-+-+	2 3 4 5 6 -+-+-+- nce number	-+-+-+-+		
+-+-+-	+-+-+-+-	+-+-+-	-+-+- tir	nestar	-+-+ np	+-+-+	-+-+-+-+	-+-+-+-+ -+-+-+		
	_		=+=+=-		=+=+=-	+=+=+		=+=+=+=+ 		
C K S	Reserved	10	Vei	<u>-</u>		Pro	=+=+=+=+ tocol Type -+-+-+			
	Encapsu	lated pa	ayload	d (Eth	nernet	t or	IP packet)			VS

Protection of other data

ST2110-WAN: Protection of other data

- Service providers and broadcasters have desire to trunk other IP data (TCP or UDP) with similar protection (specifically 2022-7 style)
- The GRE over RTP defined previously would allow both RTP merge and FEC to be applied if desired
- Differentiation of non-RTP traffic recommended so it protects optimally i.e. existing 2022-7 dual RTP flow best transported on two independent tunnels
- Broadcasters have other 'stuff' to carry in tunnel not necessarily ST2110

ST2110-WAN: Essence realignment

- Essence realignment refers to the temporal realignment of the individual essence flows that constitute a wholistic media signal to ensure they are temporally in synchronization.
- Essence alignment consideration:
 - On transit off-campus
 - On transit on-campus
- Signals may be carried as native 2110 or in some other format on WAN
- Alignment is essential when converting to composite flow (e.g. ST2022-6)
- Alignment is optional when transiting WAN as ST2110 essence
- As a minimum, the RTP timestamps of related essences shall represent the actual difference of intended offset of the flows for presentation
- RTP should be preserved within WAN transport, to allow for far-end re-alignment
- Look to further work on carrying origination time that may be of use....

Reconciling essence timings for WAN

Compression

ST2110-WAN: WAN compression

- Recognize that long-haul WAN connectivity can be too costly to use uncompressed in some scenarios
- Define compression type, profile and bit-rate range to be used
 - TR-01 100-200Mbps for 1080i/720p, 150-300Mbps for 1080P
 - TR-01 already has maximum and minimum rates recommended should they be narrowed?
 - AT&T (Nick) expand up to 500Mbps for 1080P?
- Do we want to specify TR-01 2018 ULL for some use cases?
- Consideration that JPEG-XS may well be a good candidate for recommendation within the next 12 months

MTU/fragmentation

- GRE over UDP already addresses fragmentation though could be improved
- The GRE over RTP should adopt the same text/recommendations as GRE over UDP
- Recommend that controllable media flow sources ensure packet lengths sufficiently small to avoid risk of reaching max MTU/fragmentation when wrapped
- For generic TCP data sources industry best practice (e.g. MSS clamping) should be used to minimize likelihood of fragmentation
- Other data sources (e.g. VPN data) may well default to max MTU and will be the likely area of unavoidable fragmentation

IS-OX discovery transport proxy

Campus facility 1 Campus facility 2

Transcapsulation

Security

Content Security

Discovery & control - filtering & proxy

PTP trunking

Thank you to those who have been involved There is still time for other input

vsf.tv

http://vsf.tv/SMPTE ST 2110 over WAN.shtml

