Next Gen Video Codecs

Matthew Goldman SVP Technology MediaKind

Alphabet Soup

• HEVC = High Efficiency Video Coding

- ITU-T H.265 | ISO/IEC MPEG-H Part 2
- First Standardized: 2013

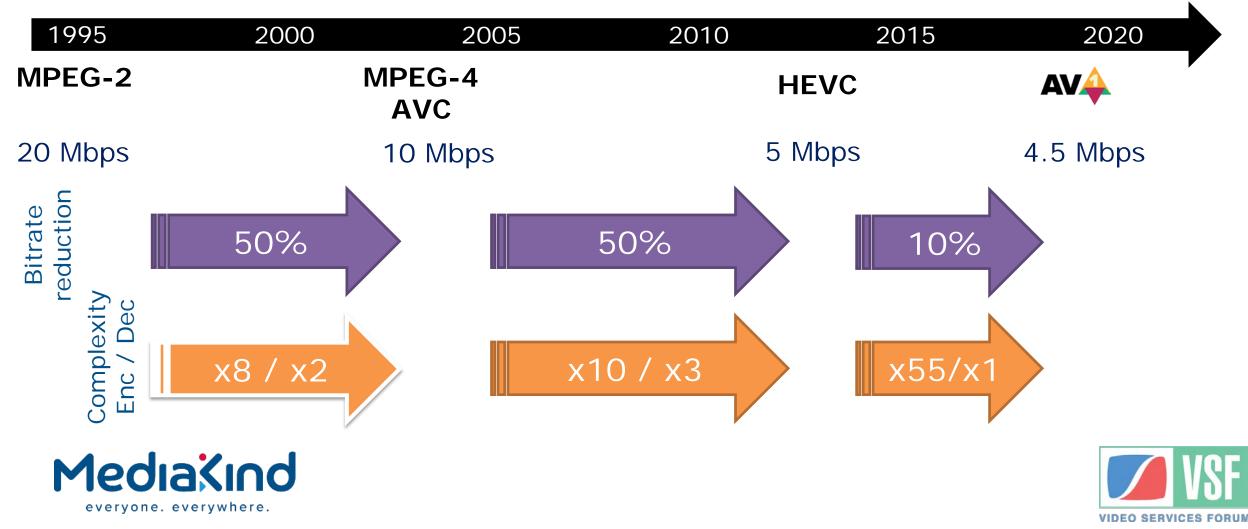
• AV1 = AOMedia Video 1

- Alliance for Open Media Video 1
- Open, claimed royalty-free
- Available 2018

• VVC = Versatile Video Coding

- ITU-T H.266 (assumed) | ISO/IEC MPEG-I Part 3
- Final Draft Standard ballot (planned first standard): July 2020

• EVC = Essential Video Coding


- ISO/IEC MPEG-5 Part 1
- Final Draft Standard ballot (planned first standard): July 2020
- LCEVC = Low Complexity Enhancement Video Coding
 - ISO/IEC MPEG-5 Part 2
 - Draft Standard status

Codec Performance

Generalized HD bitrates and complexity, referred from reference model comparisons

AV1 vs. HEVC: MediaKind Findings

Objective Measurements – Reference AV1 vs. Reference HEVC

Objective testing shows AV1 can achieve 10% less bitrate than HEVC, but much slower than real-time

	AV1 vs. HEVC / Bitrate difference (%)				
Test Resolution	SSIM YUV	PSNR YUV			
4K	-11.91%	-12.24%			
Full-HD	-9.47%	-10.17%			
WVGA	-8.02%	-8.50%			
WQVGA	-8.99%	-9.32%			
AII	-10.06%	-10.53%			

AV1 in dual pass, CPU-used=1 vs. 'HM' HEVC reference model Multiple videos using ITU video test sequences and methodology

Full test results published at <u>SMPTE2018</u> conference proceedings:

Analysis of Emerging Video Codecs: Coding Tools, Compression Efficiency and Complexity, Julien Le Tanou, Médéric Blestel.

AV1 vs. HEVC: MediaKind Findings

PQ is content dependent - Consumers unlikely to be able to determine a clear difference or preference between AV1 and HEVC

#	Description	Winner	Issue	
1	Arms	AV1 (clear)	HM is more blocky	
_ 2	Faces	HM (clear)	AV1 is more blurry	

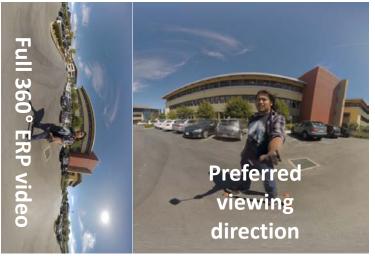
• AV1 sequences more blurry and less sharp than HEVC on detailed structures and textures; AV1 also suffered from strong temporal artifacts such as intra pulsing or local flickering

#	Description	Winner	Issue
1	Trees	HM (clear)	AV1 is blurry
1	Trees	HM (clear)	Intra Pumping
2	Leaves	AV1	HM is more blurry
3	Neck	AV1	AV1 is less blocky

• HEVC sequence suffered from blocking and ringing artifacts especially around moving objects

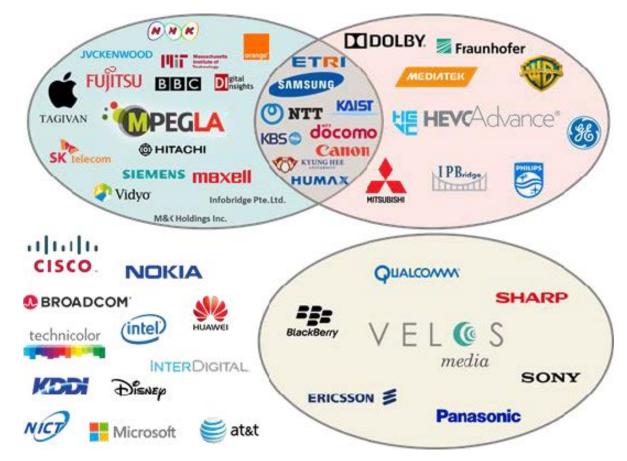
AV1 Status

- libAom, the reference software developed by the AOM consortium is still evolving Most activities concern speed-up of encoder while keeping circa same compression efficiency
- Other open-source encoder implementations are available
 - SVT-AV1 (Intel & Netflix) Latest release is much faster than libAom, while continuing to reduce the compression efficiency gap
 - Rav1e (Mozilla and Xiph) Latest release is 40-70% faster than previous
- Google decoder now available, LibAv1
- Hardware decoding chips now available:
 - Realtek (8K AV1/HEVC/VP9, HDMI v2.1 8K), Amlogic (4Kp120 AV1)
 - Amphion, Broadcom, MediaTek
 - Chips&Media licensing Wave510A IPR (4Kp60 support but scales to 8Kp60 or 4Kp120)


• LG and Samsung new TV models now support 4K AV1 decoding MediaXind

VVC – Versatile Video Coding

- Coding efficiency
 - Target 50% of HEVC bitrate
 - Support for HD/4K/8K UHD, 10b + HDR
- Versatility
 - Screen content coding (gaming, screen sharing)
 - Reference Picture Resampling (adaptive streaming resolution change)
 - Independent sub-pictures (tiled streaming of 360° video)
- VVC Test Model 6.1 over HEVC (HM)
 - 38% PSNR-based bitrate reduction for HD and UHD
 - 8.9x encoder and 1.6x decoder runtime



EVC – Essential Video Coding

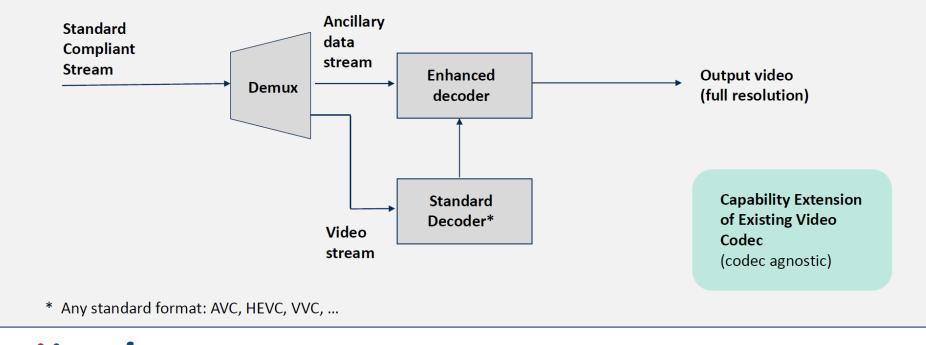
- Coding efficiency improves with every new generation, but this is not the only factor that determines industry choice of codec
- EVC designed to meet both business and technical requirements, while following common Standards Org patent policy
 - Coding efficiency at least as good as HEVC
 - Encourage timely publication of licensing terms
 - Complexity suitable for practical real-time encoding

EVC – Essential Video Coding (2)

• Baseline Profile

- Includes only technologies that are older than IPR coverage (~20 years) or that have been submitted with royalty-free declaration
- Overall testing results: EVC BP ETM3.0 vs. AVC JM19.0
 - Random access: YUV -30.8% to -32.7% -- EncT 42%, DecT 116%
 - Low delay: YUV -26.1% to -27.5% -- EncT 24%, DecT 136%

• Main Profile


- Add a small number of additional tools that each provide a significant improvement in coding efficiency
- Each tool so added is isolated and may be switched-off independently of other tools
- Overall testing results: EVC MP ETM3.0 vs. HEVC HM16.6
 - Random access: YUV -23.9% to -26.5% -- EncT 450%, DecT 154%
 - Low delay: YUV -11.3% to -16.6% -- EncT 465%, DecT 119%

LCEVC – Low Complexity Enhancement Video Coding

- Codec-agnostic codec of enhancement data, where enhancing n-th generation codec results in
 - Compression performance as close as possible to (n+1)-th generation codec
 - Encoding and decoding complexity in line with n-th generation codec

Codec Comparison to HEVC

Codec performance verses HEVC (HM 16.18):

Standard	Tested Encoder	Subjective Performance	PSNR Average Gain	Encoder Complexity	Decoder Complexity
AV1	aomenc July 2019	Comparable to HEVC, less blocking but softer with more temporal pulsing	13%	x55*	x1.1
EVC	ETM 3.0	Sharper than HEVC or AV1 but still some blocking	23%	x5	x1.7
VVC	VTM 6.0	Outperforms the other codecs	36%	x9	x1.9

Testing done Sept 2019

*slowest, highest-quality configuration

Thank You ... Questions?

Matthew Goldman matthew.goldman@mediakind.com

