Native IP decoding of MPEG-TS video to Uncompressed IP (and vice versa) on COTS hardware

Kieran Kunhya <kierank@obe.tv>

Introduction

- Many facilities have large numbers of outside sources, hundreds of single 1U encoders and decoders, single channel
 - Often not much in the way of switchers
 - Basic processing, graphics, commentary
- Using entirely COTS hardware for encoding and decoding to/from Uncompressed IP
 - Complex software engineering problems
 - Multidisciplinary: Broadcast, Networking, Multimedia
- First half of presentation about operational challenges, second part is deep dive into Software Engineering problems

Who we are?

- Company specialising in softwarebased encoders and decoders for Sport, News and Channel contribution (B2B)
- Based in Central London
- Build everything in house:
 - Hardware, firmware, software

Where it all began?

- Major UK News Channel moving building
 - Approached in 2015 about possibility of future update to 2022-6
 - Hundreds of encoders and decoders for contribution
- In the end run as SDI for 1.5 years, then "lift-and-shift"
 - Designed process for operators to migrate equipment overnight

Why do this?

- Reduce use of encapsulators
- Beyond historical-re-enactment
 - Using native IP devices to process video at scale
 - Don't invent the internet to use it to send more faxes
- Still a lot of 2022-6, not going away. Useful in linear environments with freerunning sources, no need for PTP

Challenges

- Selection of Network Interface Card (NIC) in 2015!
 - Limited choice (10GbE) and capabilities
 - Chose Intel 82599
- No analysis equipment until ~2016-17
- Limited availability of 2022-6 equipment
- Mixed SD/HD and PAL/NTSC including 720p59.94

Broadcast as an IT service

- Large amount of compute
 - Hundreds of cores (small supercomputer)
 - Usable for other things (e.g transcode)
- Managed using Ansible
 - "open-source software provisioning, configuration management, and application-deployment tool"
- COTS hardware to reduce costs, time to deployment

Hardware provisioning

- Well known methods for large scale hardware provisioning of IT hardware
 - Ubuntu Preseed to flash precise software onto hardware, inc.
 IP addresses etc
 - Ship anywhere in the world, plug-in, go
- Used by CDNs which colocate equipment on other people's network

Spin up and spin down

- Goal to allow spin up and spin down production
 - e.g Sports, Elections
- Weekend operators did this by themselves over the weekend!
 - Doubled decode capacity on same hardware
- Cloud-style usage models
 - Pay per usage

Activation log

	IP address	Extra data	Туре	Date activated
[∆			Activation	September 29, 2019 — 2:42 pm (+01:00)
0			Activation	September 29, 2019 — 2:23 pm (+01:00)
۵			Activation	September 29, 2019 — 1:41 pm (+01:00)
[∆			Activation	September 29, 2019 — 11:41 am (+01:00)
0			Activation	September 29, 2019 — 11:18 am (+01:00)
[∆			Activation	September 29, 2019 — 10:58 am (+01:00)
∆			Activation	September 29, 2019 — 10:33 am (+01:00)
۵			Activation	September 29, 2019 — 9:59 am (+01:00)
[∆			Activation	September 28, 2019 — 2:03 pm (+01:00)
[∆			Activation	September 28, 2019 — 1:38 pm (+01:00)
<u>گ</u>			Activation	September 28, 2019 — 1:12 pm (+01:00)
[∆			Activation	September 28, 2019 — 9:16 am (+01:00)

Step forward to 2019/20

- Well known consumer brand doing sports
 - Based at large production house
 - 2.5 months from commission to deploy (!!)
- World Feed of Sport decoded to 2110 for downstream processing
 - 15-20Mbps H.264, 4-8 pairs of audio
- 1080i25 or 29.97, 16ch single flow @ 125us
- Up to 15 simultaneous matches

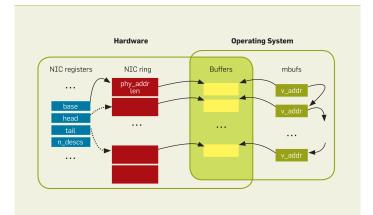
Incredible density vs SDI

- 2 full racks of decoders or encoders replaced with 2U of blade servers
- Add CPUs/RAM to nodes as needed
- Envisage cloud like racks of this in near-future
- 64+ Channels in 2U

The software engineering

High Level Overview of Challenges

- High data rates of UDP traffic
 - Many Gbps
- Unusual pixel formats, software works in 8/16-bit, packed 10-bit in 2022-6/2110
- Very tight timing requirements:
 - Order of us
- 2022-7 skew
- Internal multicast routing



Kernel Bypass

- Standard OSs not designed for volume of UDP traffic
 - Might change in future as HTTP3 deployed which uses UDP
- Direct path to NIC memory
 - Craft packets yourself IP/UDP headers
- We chose netmap, support Intel and Mellanox cards
 - Can't use vendor specific libraries

Packet pacing

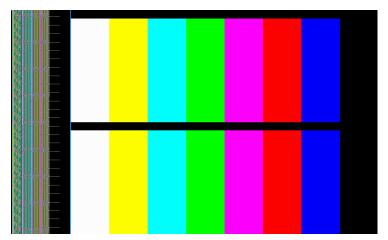
- Need to space packets evenly
- Canonical method of NIC assisted pacing
 - Send using a TX queue, ratelimit queue
 - Grace et. Al, BBC R&D 2016
 - Ideally let the OS do PTP, ping, IGMP
- Fix all the hardware bugs in pacer
 - Mellanox and Intel had large drift (sometimes 1000ppm)
 - Fractional framerate compensation

2022-7 skew

- Many problems
 - Cannot send two packets exactly at the same time
 - After loss of a path, queue empties
 - Tricky to realign queue, continually moving target
- Would love to have hardware duplicate packets
 - Send once, header rewrite using NIC eSwitch

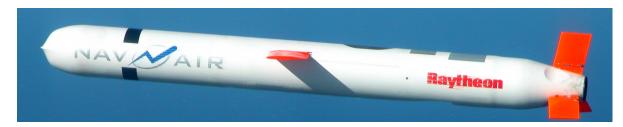
Accelerated pixel processing

- Hand written SIMD code, multiple pixels processed at once
 - Many permutations pixel formats, dozens of functions
 - Around 25 times faster than naïve implementations!
- Pixel transformations straight into NIC memory
 - SIMD + Kernel Bypass = 100-200x speed improvement!
- More detailed explanation at Demuxed 2017 presentation: <u>www.youtu.be/watch?v=A4L5xEXXlas</u>



Implementing SDI (2022-6) in software

- SDI CRC is CPU intensive
 - 10-bit data, 25-bit polynomial
 - Useless in IP
- Pixel spanning multiple packets...
- SDI Level B, painful to handle
- Cursed mixed cadence in NTSC
 - 1601/1602 on each audio group
- However, single code base across baseband and 2022-6
 - Regression tests based on real-world captures

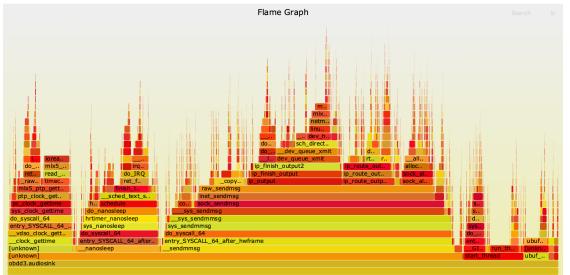


2110 software challenges (video)

- 3 coupled variables
 - Frequency
 - Phase
 - Packet Bursts
 - NIC dependent, difference between Narrow and Wide
- Change one and the others move from target!

2110 software challenges (video)

- Software senders can't just create a gap for the vertical blanking
 - Stuff with other traffic (audio etc)
- Phase is hard, don't know where you start
 - Start sending and drift your way back to PTP epoch
 - Start too late and some devices will never recover!
 - Many NICs have hardware transmit timestamps
 - Filter some timestamps that go back in the past..
- 50/59.94 fps harder, less time to react



2110 software challenges (audio)

- 125us audio is tight. Bypass is overkill for 30Mbps of traffic
- Seen one vendor send two packets at the same time (250us gap)

General software comments

- Challenging to maintain a modular codebase with Uncompressed IP
 - Technical debt accumulation
- Hard to use standard paradigms such as reference counting (especially with tiny 125us buffers)
- Very tight integration with application

Interoperability...

- One decapsulator expects source port to match destination port...
- Many don't verify IP checksums
- Not all receivers can handle 16ch flows
- Some analysers and receivers just crash
 - Sometimes within minutes, sometimes days
 - Expecting SDI-like flows...
- Clear that some receivers using packet arrival time for audio and not timestamps
- Some transmitters miles off the epoch
 - Operators route freerunning sources, causes problems for native IP devices

Where next?

- Packet Pacing is a crutch
 - Hardware packet pacers are buggy
 - Easier to send line rate and multiplex ourselves
 - Not container/VM friendly
- Docker containers
 - How do have different 2110 implementations coexist?
- True remote production
 - Use off-prem compute hardware, spin-up and down

Questions, also outside booth 13

