

Why Time Synchronization essential in IP-based Media

Steve Kolta & Allan Armstrong

Meinberg

Why Time Synchronization is essential in IP- based Media?

- > In many applications multiple audio, video and metadata essence are captured on separate equipment
 - > Multi- cameras covering an event- requiring smooth transitions
 - > Multi- microphones capturing various audio sources
 - Metadata Closed caption, and color grading

Why Time Synchronization essential in IP- based Broadcast Media?

- - based on audio and video and metadata packet stamps:
 - Synchronizing video, audio, and Ancillary Essence streams
 - Generating ST-2110 RTP timestamps
 - Generating time code labels

MEINBE

The Synchronization Experts.

Let's examine PTP in IP based TV Studio

What Key challenges are solved using Time Synchronization in IP- based Media?

> Smooth video transitions among multi cameras, playback devices and other video sources

- Prevent jitter and artifacts
- > Solves black frame / drop sync (Δ phase, Δ frequency)
- > Audio- allows for proper lip-sync and phase alignment
 - Solves lip-sync issues (Δ timestamp)
 - Prevents audio dropout during switching
 - Prevents audio drifting
 - > Prevents Pops and Crackling artifacts

> Metadata- Keeps Closed Caption and Subtitles in sync with the video

Color accuracy

AVAVAVAVAVAVAVAVAVAVA

Without Time Synchronization on the network...

> The result can be a combination of dropped video frames (black frames).

- Video frames received out of order or out of alignment causing Jitter
 - Caused by Network switch- packet optimization and network topology
 - Packets loss, buffering and latency
 - Side effect of Multicast- No acknowledgement or delivery guarantee
- Audio can completely drop during switching
 - Caused by Packets loss and network latency
- > Audio drift (run-away)
 - Improper nodes buffering (Constant bit- rate ST 2110-22)
- > Closed Caption will be out of sync with Video scenes
 - > Colors mis-match between camera and sources

AVAVAVAVAVAVAVAVAVAVAVA

Types of Time Synchronization

Types of Time Synchronization

	*IRIG	NTP	PTP
Typical accuracy	1µs	1-10 > ms	<1µs
Network characteristics	Dedicated coaxial cables	LAN, WAN	LAN
Self-calibrating	No	Yes	Yes
Specialized hardware	Yes	No	Yes

*Inter-Range Instrument Group timecodes- Standards created by the Telecommunications Working group of the US Military

10

Timing accuracy Specifications for the Broadcast Media

© Copyright VSF 2024 Confidential

11

Timing and Synchronization requirements per SMPTE 2059-2 and JT-NM (Joint Task force Network Media)

- ► For video and Mono audio: ~10ms
- ► For Stereo audio : ~10µs
 - ~ 1µs as recommended by Joint Task force Network Media <u>Reference JT-</u> <u>NMReferenceArchitecturev1.0%20150904%20FINAL.pdf</u>
- For multi camera synchronization raster sampling within = ~ 2 µs
 - Reference JT-NMReferenceArchitecturev1.0%20150904%20FINAL.pdf

Error budgeted to Network time distribution is typically 1µs

Let's look at a Super Bowl event example

Super Bowl Game

The Synchronization Experts.

High accuracy precision with PTP

© Copyright VSF 2024 Confidential

16

How is high accuracy ensured with PTP?

SMPTE 2059-2 Timing sequence

© Copyright VSF 2024 Confidential

18

PTP Flow works – PTP Messages

"Announce"

- + Used to establish the synchronization hierarchy-BMCA
- + Provides the Clock status and Clock criteria used to determine which clock becomes the Grandmaster

"Sync and Follow up"

+ Transmitted by the Grandmaster and used by the Follower to derive the time

"Delay Request"

+ Request for timing information sent from the Follower to the Grandmaster in order to determine the propagation delay between the Follower and the Grandmaster

"Delay Response"

- + Time of receipt of Delay Request message sent by the Grandmaster back to the Follower.
 - * Also known as end-to-end (E2E)

PTP Message Types

Name	Event Msg.	Purpose	Sent by
Announce		Advertise GM clock properties	Ports in master state
Sync	\checkmark	Send time	Ports in master state
Follow-up		Precise timestamp for sync	Ports in master state
Peer Delay Request	\checkmark	Delay measurement	All Peer delay ports
Peer Delay Response	✓	Delay measurement	All Peer delay ports
Peer Delay Response Follow- up		Delay measurement	All "two-step" Peer delay ports
Delay Request	✓	Delay measurement	"End-to-End" ports in slave state
Delay Response		Delay measurement	"End-to-End" ports in master state
Signaling		Unicast Negotiation	Unicast Ports
Management		Management, Monitoring	All Ports

VID25 TRANS

PTP – Synchronization Principle

How does PTP ST-2059-2 timestamps, message sequence and synchronization principal work?

The Synchronization Experts

