

Asynchronous Internode Media Transfer with Libfabric

Michael Lefebvre Sithideth Viengkhou

202<u>5-02</u>

05/05/2025

The need: Exchanging data between hosts

- > The Broadcast industry is moving to Software based computing,
- > Data exchange is not that different from HPC
 - But we need it to be real time

What is Libfabric and how could it address a need?

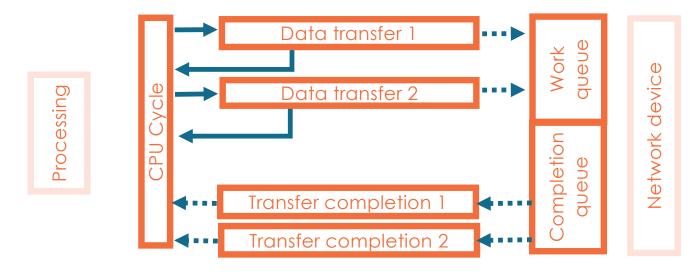
What if we had a framework that lets the user share memory between compute nodes without the user having to do much of the heaving lifting?

- > Libfabric: A Framework for exporting High Performance Networking Service to application.
 - API is application driven
 - Low level
 - Abstract diverse networking technologies
 - Supported by most OS (Linux, Window, MacOS...)
 - Can be used on premise and on most Cloud Vendors
 - Designed to be out of the way and let users focus on the application data, wherever that is.

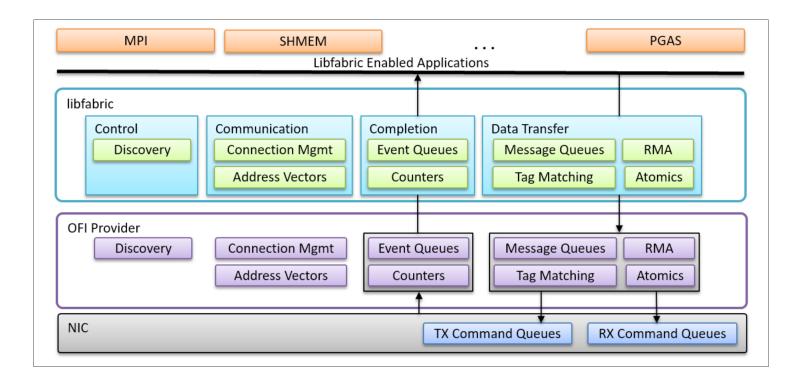
What is Libfabric, and how could it address a need?

- ► A brief history
 - > It has been developed by the Open Fabric Alliance
 - > Launched in 2015
 - > Active Open-source project
 - +192 Contributors
 - Used within HPC ~ 2018
- <u>https://github.com/ofiwg/libfabric</u>

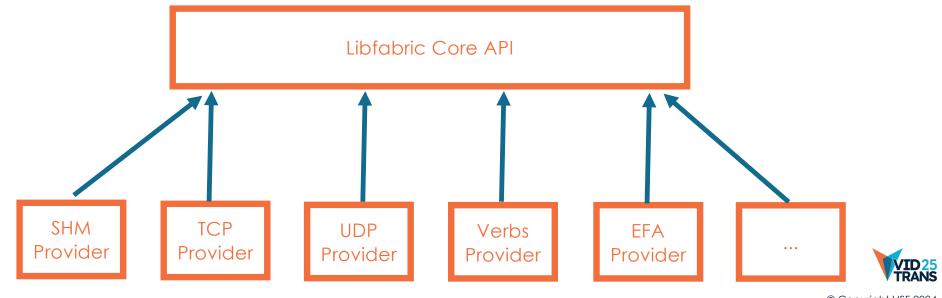
Technical introduction


- Use case with video and audio content within multiple environments
- The cost of using Libfabric

RIEDEL


Asynchronous programming model

- Non-blocking submission of data transfer to queues
- Asynchronous feedback of data transfer completion
- Other threads/processes can accomplish useful work while waiting for completions

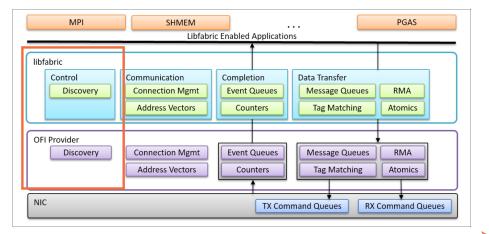

Introduction to Libfabric

Libfabric providers

- Implemented by manufacturers
- Implementer can implement only a subset of Libfabric core API

Selecting a provider

hints->fabric_attr->prov_name = "tcp"; hints->fabric_attr->prov_name = "verbs" SHM Provider TCP Provider UDP Provider Verbs EFA Provider ...


hints->fabric_attr->prov_name = "efa"

Provider discovery API

- > Identifying available Libfabric devices and their capabilities
- > fi_info binary let you inspect available providers on your node
- > fi_getinfo() allows you to inspect and select providers

```
mlefebvre@jarvis ~> fi_info -l
opx:
version: 122.0
ofi_rxm:
version: 122.0
ofi_rxd:
version: 122.0
shm:
version: 122.0
udp:
version: 122.0
tcp:
version: 122.0
```


Libfabric data transfer API

- Two-ways operations
 - Both the initiator and the target
 - Send/Recv
- One-way operations
 - Only Initiator node
 - Remote Write/Read
 - Requires memory registration
- Collective operations
 - Arbitrary number of peers
 - Complex operations

MPI	SHMEM		[PGAS	
	Libfabr	ic Enabled Applicatio	ons		
		1			
libfabric					
Control Discovery	Communication Connection Mgmt Address Vectors	Completion Event Queues Counters	Data Transfer Message Queues Tag Matching	s RMA Atomics	
OFI Provider Discovery	Connection Mgmt Address Vectors	Event Queues Counters	Message Queue Tag Matching	s RMA Atomics	
NIC		TX Con	nmand Queues	RX Command Queues	

Communication API

- Connected communications
 - Server/client architecture
 - Incomplete support
- Connection-less communications
 - A record of destination endpoints
 - Establish transfer paths at setup

MPI	SHMEM			PGAS	
	Libfabri	c Enabled Applications			
libfabric					
Control Discovery	Communication Connection Mgmt Address Vectors	Completion Event Queues Counters	Data Transfer Message Queues Tag Matching	RMA Atomics	
OFI Provider Discovery	Connection Mgmt Address Vectors	Event Queues Counters	Message Queues Tag Matching	RMA Atomics	
NIC		TX Comma	nd Queues RX	Command Queues	

Completion API

- Transfer completion feedbacks
- Blocking call
 - Not supported by all providers
 - Latency affected by the scheduler
- Non-blocking API
 - Choose a polling rate
 - Lowest latency possible
 - More wasted CPU cycles

MPI	SHMEM		[PGAS	
		ric Enabled Applicatio	ns		
libfabric					
Control Discovery	Communication Connection Mgmt Address Vectors	Completion Event Queues Counters	Data Transfer Message Queu Tag Matching		
OFI Provider Discovery	Connection Mgmt Address Vectors	Event Queues Counters	Message Queu Tag Matching		
NIC		TX Com	nmand Queues	RX Command Queues	

Libfabric memory registration

- Potentially giving up ownership of our application buffers
- Access permissions
- Memory descriptor for local buffer
- Remote protection key (rkey) for remote buffers
 - Grant access after key exchanges

Step to perform transfers (tag matching)

- 1. Select a provider and create an endpoint
- 2. Create a CQ and attach to the endpoint
- 3. Create an AV and attach to the endpoint
- 4. Add peers to the AV
- 5. Register local buffers
- 6. Data transfer

fi_tsendv(endpoint, iov, mem_descs, iov_len, dst_addr, tag, ctx);

fi_trecvv(ep, iov, mem_descs, iov_len, FI_ADDR_UNSPEC, tag, mask, ctx);

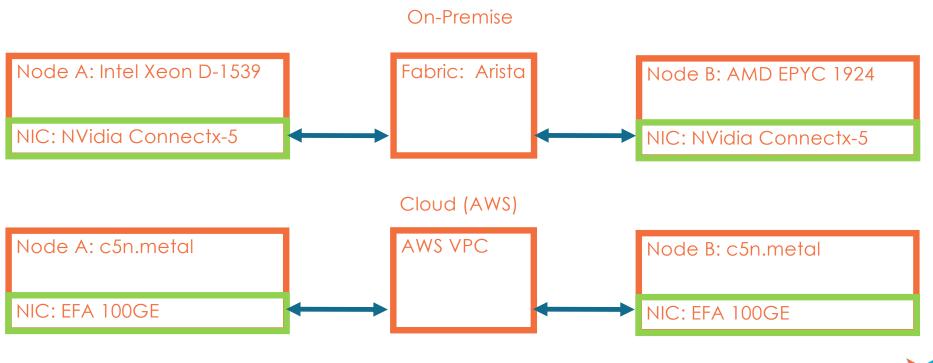
7. Poll the completion queue

```
fi_cq_read(cq, &entry, 1);
```


Confidential

Technical introduction

 Use case with video and audio content within multiple environments


The cost of using Libfabric

© Copyright VSF 2024 Confidential

R∥RIEDEL 16

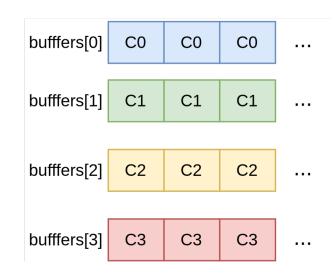
On-Prem and Cloud Setup

Performance of different providers

Uncompressed Video stream: 1920x1080p60 3 bytes per pixel

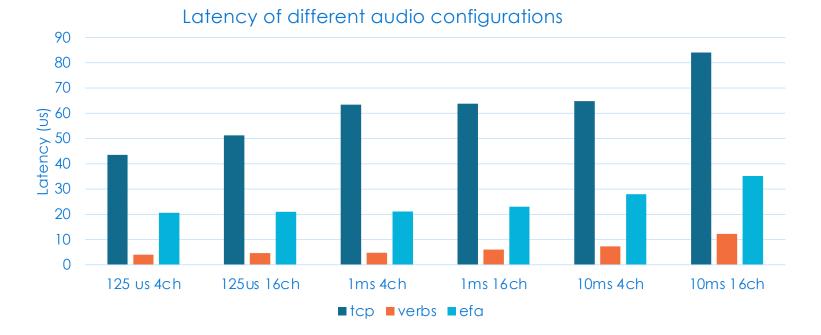
Media throughput: 373.248 MB/s Max Latency: 16ms

Provider	Throughput	Latency	CPU Usage (EPYC 1924)
TCP	390.621 MB/s	4.133 ms	11%
Verbs	395.1674 MB/s	1.344 ms	0.7%
EFA	374.9351 MB/s	2.235 ms	3%*


Interleaved vs. Split audio channels

Interleaved audio samples

buffer	C1	C2	C3	C4	C1	C2	C3	C4	
--------	----	----	----	----	----	----	----	----	--

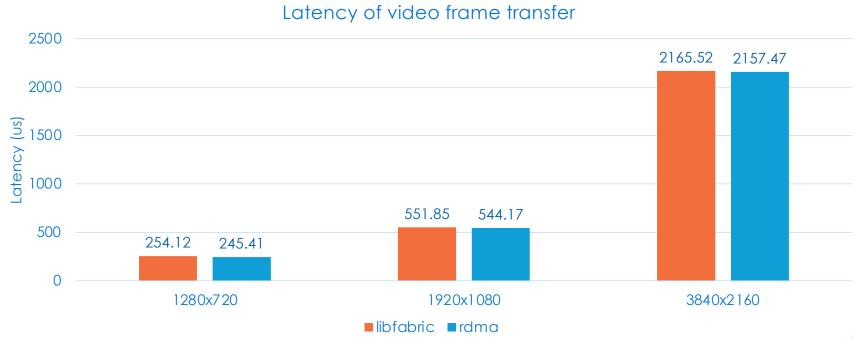

Split audio samples

Scatter-gather for split audio channels

- Leverage hardware DMA scatter-gather capabilities
- > TCP provider handles packing unpacking buffers for you

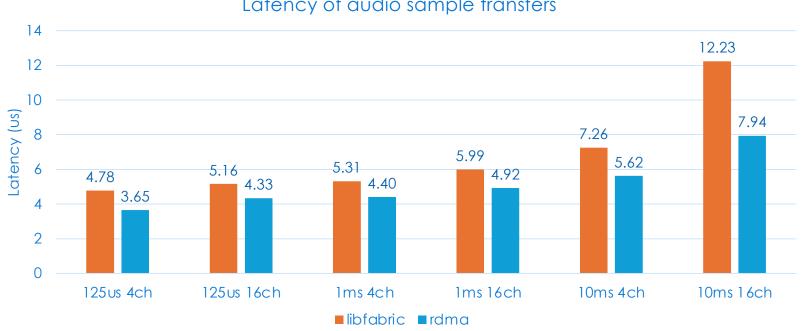
20

Technical introduction

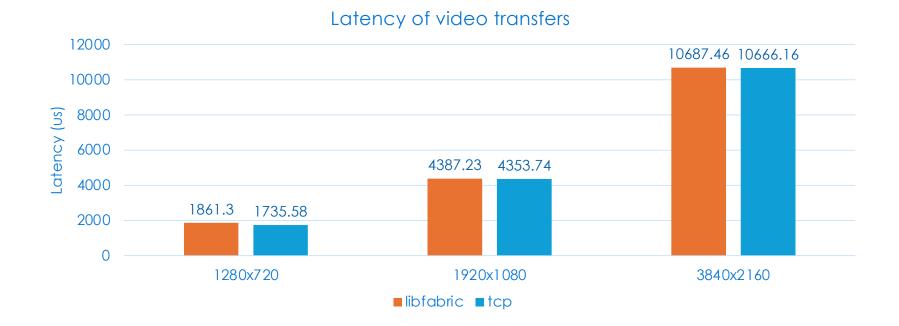

- Use case with video and audio content within multiple environments
- The cost of using Libfabric

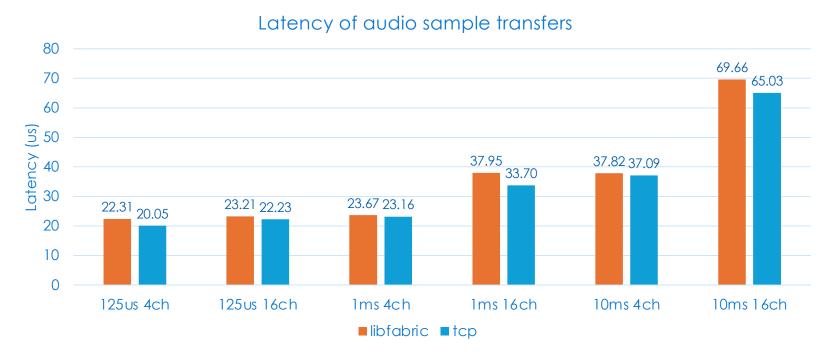
© Copyright VSF 2024 Confidential

R∥RIEDEL


Libfabric cost vs. Pure RDMA

22


Libfabric cost vs. Pure RDMA


Latency of audio sample transfers

Libfabric cost vs. Pure TCP

Libfabric cost vs. Pure TCP

In conclusion with libfabric..

THE USER CAN FOCUS ON APPLICATION DATA

PROVIDES HIGHER LEVEL SEMANTICS

THERE'S NO REAL TRADE-OFF

