

## Beyond Discovery & Registration:

An Open Solution for Control & Monitoring

Cristian Recoseanu – Tech Lead, Pebble

Cindy Zuelsdorf - Marketing & Membership, AMWA





### **NMOS Control & Monitoring**



#### **>** What

A family of open, free of charge specifications that enable interoperability between media devices on an IP infrastructure.

#### **>** Why

Enables end-users and SIs to create best of breed solutions from a greater pool of vendors which interoperate at different layers





#### NMOS "Layers"



#### Roadmap Specs Connection **Device Configuration** Resource **Device Control &** management management monitoring • Stream compatibility management (IS-11) • Event & tally (IS-07) • Discovery and Connection management (IS-05) Registration (IS-04) • Device configuration Channel mapping (IS-14) • Annotation (IS-13) (IS-12)(IS-08) Natural grouping Control architecture Receiver capabilities (MS-05-01) (BCP-002-01) (BCP-004-01) Asset Distinguishing Control framework Information • JPEG-XS (BCP-006-01) (MS-05-02) (BCP-002-02) Receiver status • H264 (BCP-006-02) (BCP-008-01) • H265 (BCP-006-03) • MPEG-TS (BCP-006-(BCP-008-02) 04) • NDI (BCP-007-01)

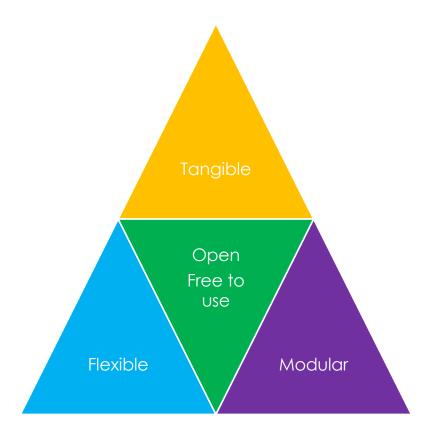




#### NMOS Control & Monitoring – An Open Solution



Establishes a standard, interoperable vision, philosophy, and platform for device control and monitoring within the NMOS ecosystem and community.


- ➤ Secure by design with <u>BCP-003</u> and <u>IS-10</u> specifying the requirements
- Architecture and roadmap are governed not by a single entity but by the NMOS community
- ➤ Benefits from interoperability testing within the NMOS ecosystem
- ➤ Benefits from a forum where vendors, end users and integrators can provide feedback about any concerns/improvements/integration issues they may have

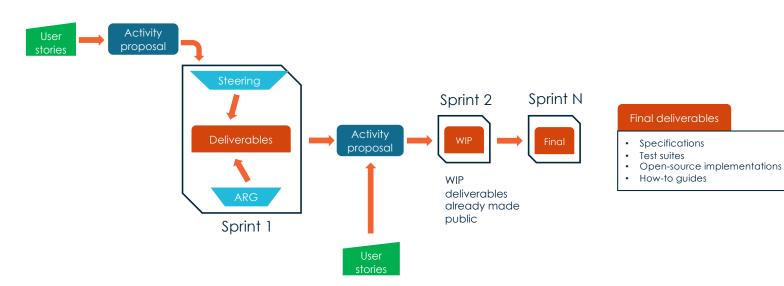




### **NMOS** Distinguishing Attributes










### Open



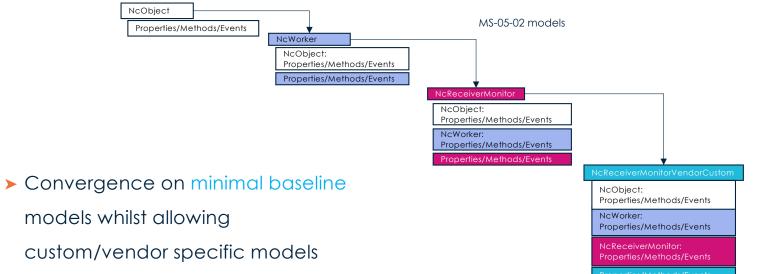
> A truly open solution every step of the way.









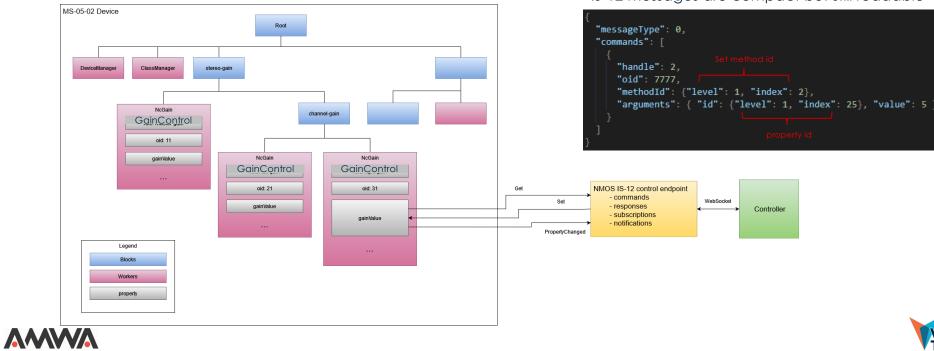

| MS-05-01     | <ul><li>Vision</li><li>Philosophy</li><li>Overview</li></ul>                                                                                      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| MS-05-02     | Framework  Modelling language & rules  Core control classes & datatypes portfolio  Device control model discovery                                 |
| <u>IS-12</u> | <ul> <li>Exposes and interacts with objects and properties</li> <li>Commands and notifications</li> <li>Transport and message encoding</li> </ul> |
| BCPs         | Feature sets Opt-in models and requirements for specific features                                                                                 |
| BCP-008-01   | Receiver status  Describes the status monitoring domains along with expectations, behaviour and conformance requirements                          |
| BCP-008-02   | Sender status  Describes the status monitoring domains along with expectations, behaviour and conformance requirements                            |
|              |                                                                                                                                                   |

The problem space is explored at different levels offering the optimal amount of standardization whilst maintaining vendor freedom and ensuring interoperability.







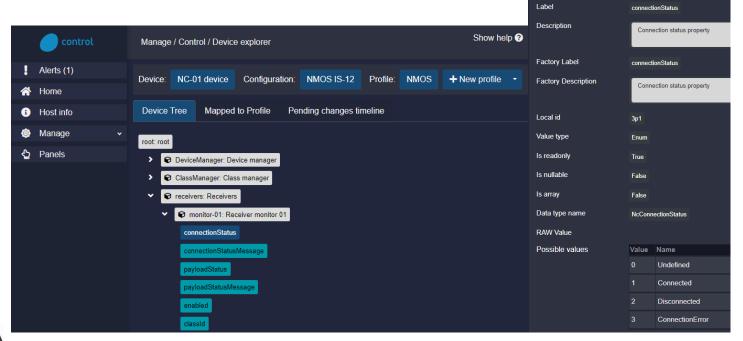









➤ Convergence on the protocol




IS-12 messages are compact but still readable

```
© Copyright VSF 2025
Confidential
```



Controller fully discovering an MS-05/IS-12 device (including vendor specific elements)



Details

Path

root/receivers/monitor-01





Architecture

(MS-05-01)

Design

Control protocol

(IS-12)

Device models

Feature sets register

NcBlock

Managers

Feature specific

models

Vendor specific models

API

Commands

Core models

NcObject

NcReceiverMonitor





direct vendor and end-user involvement

 Vendors propose existing vendor specific models for registration as a common feature set





- > All the deliverables end up in the public domain on GitHub
- > WIP versions of the specifications are available publicly on GitHub from the very first few sprints





#### NMOS

#### Specs

- MS-05-01: NMOS Control Architecture https://specs.amwa.tv/ms-05-01/
- MS-05-02: NMOS Control Framework https://specs.amwa.tv/ms-05-02/
- ➤ IS-12: NMOS Control Protocol <a href="https://specs.amwa.tv/is-12/">https://specs.amwa.tv/is-12/</a>
- BCP-008-01: Receiver status
  <a href="https://specs.amwa.tv/bcp-008-01/">https://specs.amwa.tv/bcp-008-01/</a>
- BCP-008-02: Sender status <a href="https://specs.amwa.tv/bcp-008-02/">https://specs.amwa.tv/bcp-008-02/</a>









Developer resources and tools – Get started quickly, here's everything you need:

- INFO-006: Implementation guide for NMOS Device Control https://specs.amwa.tv/info-006/
- NMOS Device Control Mock
  <a href="https://github.com/AMWA-TV/nmos-device-control-mock">https://github.com/AMWA-TV/nmos-device-control-mock</a>
- nmos-cpp: Open-source Node SDK Framework Implementation https://github.com/sony/nmos-cpp







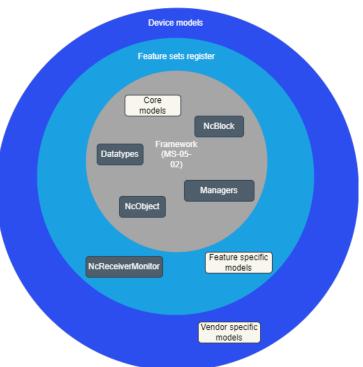






Comprehensive test suite covering:

- ➤ MS-05-02 framework core model conformance
- ➤ IS-12 conformance including commands, responses, subscriptions, notifications and error reporting
- > Feature sets model conformance testing where we can opt in each individual feature set through configuration
- ➤ Behaviour testing for specific features defined in a BCP (BCP-008-01/02)
- Vendor specific models to ensure compatibility and interoperability



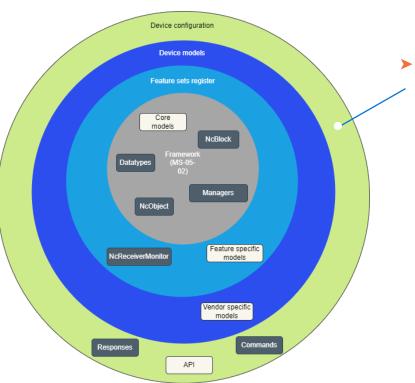



#### Modular



Creating a multi layered solution means we can mix and match to best address the target user stories.





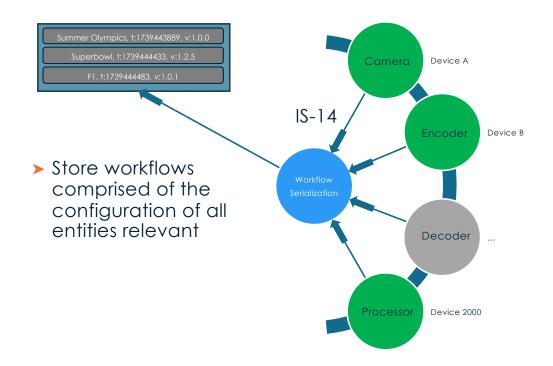



#### Modular



➤ <u>IS-14: Device configuration</u> uses the same underlying modelling language



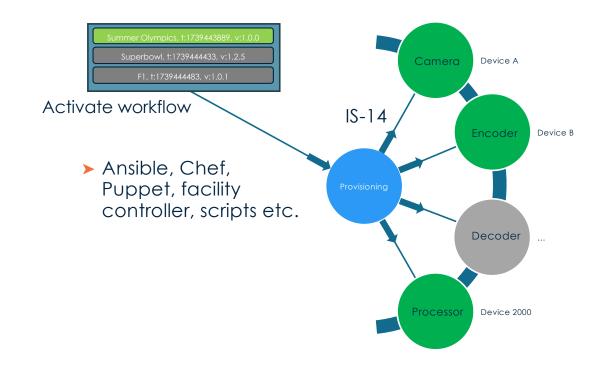

 HTTP based API with an emphasis on retrieval and restoring of configuration for backup, restore and other provisioning scenarios





### **Shared Model Synergy**



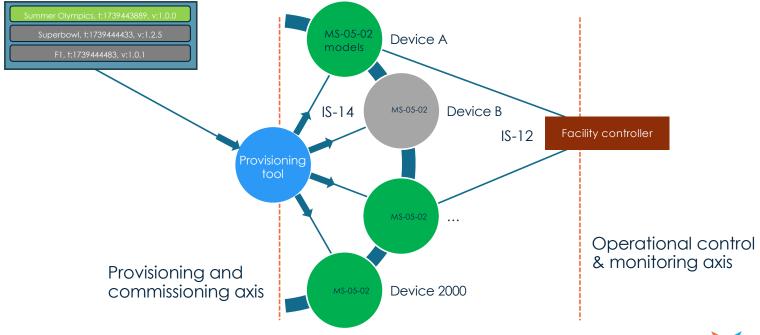







### **Shared Model Synergy**





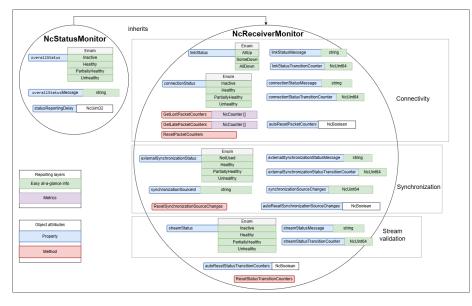





### **Shared Model Synergy**







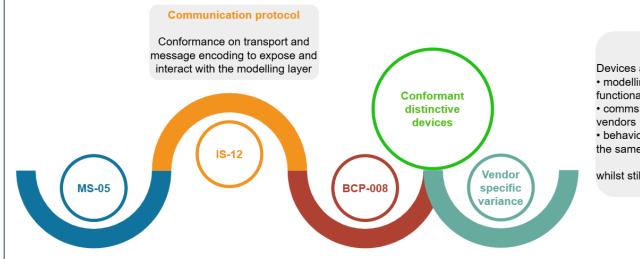



#### **Models Solve Problems**



Receiver status (BCP-008-01) models diagram




- ➤ People think in entities/objects/interactions (not in bytes).
- ➤ IS-12 is very simple it's a thin wrapper around the models. You can build another protocol in a couple of hours.
- Industry bodies, system integrators, problem solvers need to be able to describe a problem and solution requirements using a modelling language which feels natural.
- The solution models are published by a communication protocol which is an enabler.





#### **Conformance Strategy**





#### Multi level interoperability

Devices achieve interoperability at different levels:

- modelling: end users and client apps can discover minimum levels of functionality across a domain
- comms: client apps need just 1 integration to interact with multiple vendors
- behaviour: end users know that their fleet of devices operates within the same domain rules where appropriate

whilst still catering for vendor specific variance

#### Modelling

Conformance on how to create minimum standard domain models which can be derived with vendor specific functionality

#### Behaviour

Conformance on media nodes behaviour across specific domains (e.g. monitoring functional elements like senders and receivers)

#### Vendor customization

Any standard model can be derived with vendor specific functionality whilst maintaining interoperability

NMOS Control & Monitoring





# Thank you!





# Beyond Discovery & Registration:

**An Open Solution for Control & Monitoring** 





